giải pt: \(\sqrt[3]{x^2+26}+3\sqrt{x}+\sqrt{x+3}=8\)
Giải pt: \(\sqrt[3]{x^2+26}+\sqrt{x+3}+3\sqrt{x}=8\)
ĐKXĐ: x>=0
PT đã cho <=>\(\left(\sqrt[3]{x^2+26}-3\right)+\left(\sqrt{x+3}-2\right)+\left(3\sqrt{x}-3\right)=0\)
<=>\(\frac{\left[\left(\sqrt[3]{x^2+26}\right)^3-27\right]}{\sqrt[3]{\left(x^2-26\right)^2}+3\sqrt[3]{x^2-26}+9}+\frac{\left[\left(\sqrt{x+3}\right)^2-4\right]}{\sqrt{x+3}+3}+\frac{3.\left[\left(\sqrt{x}\right)^2-1\right]}{\sqrt{x}+1}\)=0
<=>\(\frac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{x-1}{\sqrt{x+3}+3}+\frac{3.\left(x-1\right)}{\sqrt{x}+1}=0\)
<=>(x-1)\(\left(\frac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt{x^2+26}+9}+\frac{1}{\sqrt{x+3}+3}+\frac{3}{\sqrt{x}+1}\right)=0\)
<=>x=1
Bạn không hiểu chắc chưa học đến phương pháp "liên hợp" hả .
giải pt :
a, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
b, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
c,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
giải pt :
a, \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
b, \(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
c, \(\left(x+3\right)\sqrt{-x^2-8x+48}=x-24\)
d, \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
e, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
giải pt:
a, \(\sqrt{x-2}+\sqrt{y+1995}+\sqrt{z-1996}=\dfrac{1}{2}\left(x+y+z\right)\)
b\(\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}=8-x^2+2x\)
c,\(\left(\sqrt{x+8}-\sqrt{x+3}\right)\left(\sqrt{x^2+11x+24}+1\right)=5\)
giúp tôi giải bài này với thank nhiều
Giải phương trình \(\sqrt[3]{x^2+26}+3\sqrt{x}+\sqrt{x+3}=8\)
Đk: x>=0
\(\Leftrightarrow\frac{x^2-1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+3\frac{x-1}{\sqrt{x}+1}+\frac{x-1}{\sqrt{x+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+\frac{3}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right)=0\)
Với đk x>=0 ta có\(\frac{x+1}{\sqrt[3]{\left(x^2+26\right)^2}+3\sqrt[3]{x^2+26}+9}+\frac{3}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}>0\)
pt <=> x-1=0<=>x=1 (tm)
giải pt\(\sqrt[3]{7x+1}-\sqrt[3]{x^2-x-8}+\sqrt[3]{x^2-8x-1}=2\)
giải pt \(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
ĐKXĐ: \(x\ge-2\)
\(\sqrt{2}\left(x^2+8\right)=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2-2x+4}=b>0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}\left(2a^2+b^2\right)=5ab\)
\(\Leftrightarrow4a^2-5\sqrt{2}ab+2b^2=0\)
\(\Leftrightarrow\left(a-\sqrt{2}b\right)\left(4a-\sqrt{2}b\right)=0\)
Đến đây chắc bạn tự giải được
ĐKXĐ: x≥−2x≥−2
√2(x2+8)=5√(x+2)(x2−2x+4)2(x2+8)=5(x+2)(x2−2x+4)
Đặt {√x+2=a≥0√x2−2x+4=b>0{x+2=a≥0x2−2x+4=b>0
⇒√2(2a2+b2)=5ab⇒2(2a2+b2)=5ab
⇔4a2−5√2ab+2b2=0⇔4a2−52ab+2b2=0
⇔(a−√2b)(4a−√2b)=0
Giải pt :
\(3\sqrt[3]{x^2}+\sqrt{x^2+8}-2=\sqrt{x^2+15}\)
Giải PT:
\(\dfrac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\dfrac{x^2-\sqrt{3}}{x-\sqrt{x^2-\sqrt{3}}}=x\)