Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
✎﹏トラン⋮ Hannie ッ
Xem chi tiết
Nguyễn Ngọc Huy Toàn
20 tháng 4 2022 lúc 17:05

jz pà:)) 

Nguyễn Ngọc Huy Toàn
20 tháng 4 2022 lúc 17:09

Áp dụng BĐT AM-GM, ta có:

\(\dfrac{1}{ab}\ge\dfrac{4}{\left(a+b\right)^2}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{\left(a+b\right)^2}\)

Ta có:

\(\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{2}.\dfrac{1}{ab}+\dfrac{1}{2}.\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)

                         \(=\dfrac{1}{2}.\dfrac{1}{ab}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\)

\(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\ge\dfrac{1}{2}.\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left(a^2+b^2+2ab\right)^2}\)

                            \(\ge\dfrac{1}{2}.\dfrac{4}{\left(a+b\right)^2}+\dfrac{4}{\left[\left(a+b\right)^2\right]^2}\)

                           \(\ge\dfrac{1}{2}.\dfrac{4}{1^2}+\dfrac{4}{\left(1^2\right)^2}\)

                           \(\ge2+4=6\) ( đfcm )

Big City Boy
Xem chi tiết
An Nguyễn Thiện
Xem chi tiết
Akai Haruma
8 tháng 8 2017 lúc 21:40

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

Akai Haruma
8 tháng 8 2017 lúc 22:01

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

Akai Haruma
8 tháng 8 2017 lúc 22:16

Bài 5:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{a^2}{ab+ac-a^2}+\frac{b^2}{ab+bc-b^2}+\frac{c^2}{ac+bc-c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}\)

Theo hệ quả của BĐT AM-GM ta có:

\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{ab+bc+ac}\) \((1)\)

Lại có:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}\) \((2)\)

Từ \((1),(2)\Rightarrow \text{VT}\geq 3\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

b) Để CM \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) ta cần chỉ ra:

\(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{c+a}\), \(\frac{1}{a+b}+\frac{1}{c+a}>\frac{1}{b+c},\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b}\)

Xét hiệu \(\frac{1}{a+b}+\frac{1}{b+c}-\frac{1}{c+a}=\frac{2b+a+c}{(a+b)(b+c)}-\frac{1}{a+c}=\frac{b(a+c-b)+a^2+c^2}{(a+b)(b+c)(c+a)}\)

\(a,b,c\) là độ dài ba cạnh tam giác nên hiệu trên luôn lớn hơn $0$

Do đó \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

Hoàn toàn tương tự với các hiệu còn lại, ta thu được đpcm.

An Nguyễn Thiện
Xem chi tiết
Nguyễn Quang Định
10 tháng 8 2017 lúc 5:49

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

Nguyễn Quang Định
10 tháng 8 2017 lúc 5:52

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

Nguyễn Quang Định
10 tháng 8 2017 lúc 5:55

4) a) Thiếu điều kiện \(x\ge0\)

Xét hiệu: \(x^3+4x+1-3x^2=x\left(x-2\right)^2+x^2+1>0\)

Suy ra đpcm

b) \(x^4-x+\dfrac{1}{2}=x^4-x^2+\dfrac{1}{4}+x^2-x+\dfrac{1}{4}=\left(x^2-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2\ge0\)

Không xảy ra dấu bằng => đpcm

vvvvvvvv
Xem chi tiết
Hồng Phúc
15 tháng 3 2021 lúc 17:04

I. Đúng do BĐT Cosi \(a+\dfrac{9}{a}\ge2.\sqrt{a.\dfrac{9}{a}}=6\)

II. Sai do \(\dfrac{a^2+5}{\sqrt{a^2+4}}=\sqrt{a^2+4}+\dfrac{1}{\sqrt{a^2+4}}\ge2+\dfrac{1}{a^2+4}>2\)

III. Đúng do BĐT Cosi \(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{\sqrt{ab}}{2\sqrt{ab}}=\dfrac{1}{2}\)

IV. Đúng do BĐT BSC \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge\left(\sqrt{a}.\dfrac{1}{\sqrt{a}}+\sqrt{b}.\dfrac{1}{\sqrt{b}}\right)^2=4\)

Song Lam Diệp
Xem chi tiết
Phạm Nguyễn Tất Đạt
24 tháng 4 2018 lúc 20:35

Đặt \(C=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)

\(C=\dfrac{1}{2ab}+\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\)

Ta có:\(2ab\le\dfrac{\left(a+b\right)^2}{2}\)(tự cm)

\(\Rightarrow\dfrac{1}{2ab}\ge\dfrac{1}{\dfrac{1}{2}}=2\)

Lại có:\(\dfrac{1}{2ab}+\dfrac{1}{a^2+b^2}\ge\dfrac{4}{a^2+2ab+b^2}=\dfrac{4}{\left(a+b\right)^2}=4\)(tự cm)

\(\Rightarrow C\ge2+4=6\left(đpcm\right)\)

Andromeda Galaxy
Xem chi tiết
ASOC
Xem chi tiết
Tô Mì
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2023 lúc 23:26

\(a^2+b^2+c^2\ge ab+bc+ca=2\)

Áp dụng BĐT C-S:

\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)

Đặt \(a^2+b^2+c^2=x\)

Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)

\(\Leftrightarrow x\ge2\) (đúng)

Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)