\(\sqrt{7-2\sqrt{10}}+\sqrt{2}\)
tính
Tính
\(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{14+4\sqrt{10}}\) - \(2\sqrt{2x-4\sqrt{10}}\) + 3\(\sqrt{13-4\sqrt{10}}\)
Tính:
1) \(\sqrt{4-2\sqrt{3}}\)
2) \(\sqrt{5+2\sqrt{6}}\)
3) \(\sqrt{7-2\sqrt{10}}\)
4) \(\sqrt{14-6\sqrt{6}}\)
5) \(\sqrt{8+2\sqrt{15}}\)
6) \(\sqrt{10-2\sqrt{21}}\)
7) \(\sqrt{11+2\sqrt{18}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1) \(=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
2) \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}\)
3) \(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}=\sqrt{5}-\sqrt{2}\)
5) \(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}\)
6) \(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{7}-\sqrt{3}\)
7) \(=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)
1) thực hiện phép tính
d)\(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
e) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
giúp mk vs ạ mk cần gấp
Tính \(\frac{2\sqrt{3}-4}{\sqrt{3}-1}+\frac{2\sqrt{2}-1}{\sqrt{2}-1}-\frac{1+\sqrt{6}}{\sqrt{2}+3}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)
\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)
\(C=\sqrt{4+5}\)
\(C=3\)
Tính giá trị các biểu thức sau:
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
a, đặt \(\sqrt{2-\sqrt{3}}\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{2-\sqrt{3}}.\sqrt{2}.\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\left(\sqrt{3}+1\right)\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
\(b,\)
\(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}=\left[\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\right].\sqrt{10-2\sqrt{21}}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}\right)^2-2\sqrt{7.3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{7}\left(7-3\right)=4\sqrt{7}\)
a) Ta có: \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}+\sqrt{2}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=3-1=2
b) Ta có: \(\left(\sqrt{21}+7\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\sqrt{7}\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=4\sqrt{7}\)
Tính:
\(\frac{\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}}{\sqrt{7+2\sqrt{10}}}\)
Biến đổi tử ta được:
\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}\right)^2-2.\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}\)
\(=\sqrt{5}+\sqrt{2}\)
Biến đổi mẫu ta được:
\(\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2+2.\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}+\sqrt{2}\)
Suy ra biểu thức trên có giá trị bằng 1
Tử = \(\sqrt{3}\)+ \(\sqrt{2}\)+ \(\sqrt{5}\)- \(\sqrt{3}\)
Mẫu = \(\sqrt{2}\)+ \(\sqrt{5}\)
Kq =1
Bài: Tính giá trị các biểu thức sau
a. \(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}+\sqrt{2}\right)\)
b. \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
Tính P khi x = ( \(\sqrt{7}+\sqrt{3}\)) \(\sqrt{10-2\sqrt{21}}\)
Lời giải:
\(P=(\sqrt{7}+\sqrt{3})\sqrt{10-2\sqrt{21}}=(\sqrt{7}+\sqrt{3})\sqrt{7-2\sqrt{7.3}+3}\)
\(=(\sqrt{7}+\sqrt{3})\sqrt{(\sqrt{7}-\sqrt{3})^2}=(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})\)
\(=7-3=4\)
Ta có: \(x=\left(\sqrt{7}+\sqrt{3}\right)\cdot\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
=7-3
=4
\(\dfrac{\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}\)+\(\dfrac{8}{1-\sqrt{5}}\)
\(\dfrac{5+\sqrt{7}}{9-\sqrt{23+8\sqrt{7}}}\)+\(\dfrac{5-\sqrt{7}}{2+\sqrt{16+6\sqrt{7}}}\)
\(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}\)+\(\dfrac{1}{\sqrt{2}-\sqrt{2+\sqrt{3}}}\)
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
Thực hiện các phép tính
a, \(\sqrt{5+2\sqrt{6}}-\sqrt{2-2\sqrt{6}}\)
b,\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
c, \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
d, \(\sqrt{24+8\sqrt{5}+}\sqrt{9-4\sqrt{5}}\)
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{2}+2}-\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) (vì \(\sqrt{5}\ge\sqrt{2}\)
=0
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3+1}\) (vì \(\sqrt{3}\ge1\))
\(=2\sqrt{3}\)
a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}-\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) (vì \(\sqrt{3}\ge\sqrt{2}\))
=0