giải pt
\(\left(x^2-2x+2\right)\left(x^2-2x-1\right)=2\)
\(x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
e,\(\left(x^2+x+1\right)^2-2x^2-2x=5\)
Giải pt
\(a.x^2+\dfrac{1}{x^2}=x+\dfrac{1}{x}\) ( ĐKXĐ : \(x\ne0\) )
\(\Leftrightarrow x^2+\dfrac{1}{x^2}-x-\dfrac{1}{x}=0\Leftrightarrow\left(x^2-\dfrac{1}{x}\right)+\left(\dfrac{1}{x^2}-x\right)=0\)
\(\Leftrightarrow-x\left(\dfrac{1}{x^2}-x\right)+\left(\dfrac{1}{x^2}-x\right)=0\Leftrightarrow\left(\dfrac{1}{x^2}-x\right)\left(1-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\\dfrac{1}{x^2}-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\1-x^3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(1-x\right)\left(1+x+x^2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\Leftrightarrow x=1\) ( x2 + x + 1 loại nhé nếu phân tích ra thì ta được \(x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\in R\) )
Vậy \(S=\left\{1\right\}\)
b, \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow x\left(x+3\right).\left(x+1\right)\left(x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)-24=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)-1-24=0\Leftrightarrow\left(x^2+3x+1\right)-25=0\)
\(\Leftrightarrow\left(x^2+3x+1-5\right)\left(x^2+3x+1+5\right)=0\Leftrightarrow\left(x^2+3x-4\right)\left(x^2+3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(x+4\right)=0\\\left(x+\dfrac{3}{2}\right)^2+\dfrac{15}{4}\ge\dfrac{15}{4}\forall x\in R\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{-4;1\right\}\)
e, \(\left(x^2+x+1\right)-2x^2-2x=5\Leftrightarrow\left(x^2+x+1\right)-2x^2-2x-2-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)-2\left(x^2+x+1\right)-3=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-1\right)-3=0< =>\left(x^2+x\right)^2-4=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\) ( x^2 + x + 2 loại nhé y như mấy câu trên luôn khác 0 ! )
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-2;1\right\}\)
giải pt :
a, \(\left(2x-6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
Giải PT: \(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2019\)
Chú ý:
\(\left(x^2+2x\right)^2+4\left(x+1\right)^2=\left(x^2+2x\right)^2+4\left(x^2+2x+1\right)=\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4\)
\(=\left(x^2+2x+2\right)^2\)
\(x^2+\left(x+1\right)^2+\left(x^2+x\right)^2\)
\(=\left(x^2+x\right)+x^2+x^2+2x+1\)
\(=\left(x^2+x\right)^2+2x^2+2x+1\)
\(=\left(x^2+x\right)^2+2\left(x^2+x\right)+1\)
\(=\left(x^2+x+1\right)^2\)
Giải pt \(\left(2x^2-2x+1\right)\left(2x+1\right)+\left(8x^2-8x+1\right)\sqrt{-x^2+x}=0\)
Giải pt:
\(x^2\left(x-1\right)^2=\left(2x-1\right)^2+2\)
\(x^2\left(x-1\right)^2=\left(2x-1\right)^2+2\)
\(\Leftrightarrow x^2\left(x-1\right)^2=\left[x+\left(x-1\right)\right]^2+2\)
\(\Leftrightarrow x^2\left(x-1\right)^2=4x^2-4x+1+2\)
\(\Leftrightarrow x^2\left(x-1\right)^2-4x\left(x-1\right)-3=0\) (1)
Đặt \(a=x\left(x-1\right)\)
\(x\left(x-1\right)=x^2-x=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(ĐK:a^2\ge2\Leftrightarrow\left|a\right|\ge\sqrt{2}\)
\(\left(1\right)\Leftrightarrow a^2-4a-3=0\)
\(\Delta=\left(-4\right)^2-4.\left(-3\right)=16+12=28>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4+\sqrt{28}}{2}=2+\sqrt{7}\left(tm\right)\\a=\dfrac{4-\sqrt{28}}{2}=2-\sqrt{7}\left(ktm\right)\end{matrix}\right.\)
\(\rightarrow x\left(x-1\right)=2+\sqrt{7}\)
\(\Leftrightarrow x^2-x-\left(2+\sqrt{7}\right)=0\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{9+4\sqrt{7}}}{2}\)
Vậy \(S=\left\{\dfrac{1\pm\sqrt{9+4\sqrt{7}}}{2}\right\}\)
giải pt \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
giải pt :a,\(\left(2x+6\right)\sqrt{x+4}-\left(x-5\right)\sqrt{2x+3}=3\left(x-1\right)\)
b, \(\left(4x+1\right)\sqrt{x+2}-\left(4x-1\right)\sqrt{x-2}=21\)
c, \(\left(4x+2\right)\sqrt{x+1}-\left(4x-2\right)\sqrt{x-1}=9\)
d, \(\left(2x-4\right)\sqrt{3x-2}+\sqrt{x+3}=5x-7+\sqrt{3x^2+7x-6}\)
giải pt: \(x^4=\left(1-x\right)\left(x^2-2x+2\right)\)
\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2-4x+4\right)\)
\(\Leftrightarrow x^4=\left(1-x\right)\left(x^2+2x-2\right)+\left(2x-2\right)^2\)
\(\Leftrightarrow x^4-\left(2x-2\right)^2+\left(x-1\right)\left(x^2+2x-2\right)=0\)
\(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x-2\right)+\left(x-1\right)\left(x^2+2x-2\right)=0\)
\(\Leftrightarrow\left(x^2+2x-2\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(x^2+2x-2\right)\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Leftrightarrow x^2+2x-2=0\) (bấm máy)
giải pt:\(\left(x^2+3x+3\right)^3+\left(x^2-x-1\right)^3+\left(-2x^2-2x-1\right)^3=1\)
\(\left(x^2+3x+3\right)^3+\left(x^2-x-1\right)^3=1^3+\left(2x^2+2x+1\right)^3\)
dùng hđt \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
có nhân tử chung
giải pt:
\(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{-2x}{\left(3-x\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
=>x=0(nhận) hoặc x=3(loại)
đk : x khác -1 ; 3
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)