Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 11 2021 lúc 23:10

a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)

huy tạ
Xem chi tiết
Nguyễn Hoàng Minh
28 tháng 12 2021 lúc 19:58

Xem lại đề

Đinh Cẩm Tú
Xem chi tiết
Đinh Doãn Nam
Xem chi tiết
LIÊN
12 tháng 1 2019 lúc 9:29
https://i.imgur.com/NPx7OjZ.jpg
LIÊN
12 tháng 1 2019 lúc 9:14
https://i.imgur.com/cKHt1qr.jpg
Đinh Cẩm Tú
Xem chi tiết
Trúc Giang
14 tháng 1 2021 lúc 18:11

a) ĐKXD: x ≠ 2

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)

\(\Leftrightarrow-2+x=-3\left(x-2\right)\)

\(\Leftrightarrow-2+x=-3x+6\)

\(\Leftrightarrow x+3x=6+2\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)

Vậy S = ∅

b) ĐKXĐ: x ≠ 7

 \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)

\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)

\(\Leftrightarrow-1=8\left(vô-lý\right)\)

Vậy S = ∅ 

P/s: Ko chắc ạ! 

Trúc Giang
14 tháng 1 2021 lúc 18:17

c) ĐKXĐ: x ≠ 1

\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)

Quy đồng và khử mẫu ta được:

\(x^2+x+1+2x\left(x-1\right)=3x^2\)

\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)

\(\Leftrightarrow-x+1=0\)

\(\Leftrightarrow x=1\) (loại vì ko t/m đk)

Vậy S = ∅

 

Cíu iem
Xem chi tiết
ILoveMath
9 tháng 11 2021 lúc 8:56

a) \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}=\dfrac{x\left(x+y\right)+2y^2-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x^2+xy+2y^2-x^2+xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y^2+2xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y}{x-y}\)

b) \(B=\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}=\dfrac{x\left(x+2\right)-4x-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)

c) \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3+1}=\dfrac{5\left(x^2-x+1\right)+10\left(x+1\right)-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)

Vũ Thị Thu Hằng
Xem chi tiết
Kien Nguyen
18 tháng 12 2017 lúc 14:01

Phân thức đại sốPhân thức đại số

Đoàn Vũ Hải Yến
Xem chi tiết

1: Ta có: \(\dfrac{x}{3}=\dfrac{y}{6}\)

mà 4x-y=42

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{4x-y}{4\cdot3-6}=\dfrac{42}{12-6}=\dfrac{42}{6}=7\)

=>\(x=7\cdot3=21;y=6\cdot7=42\)

2: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x-2y+3z=33

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{2-6+15}=\dfrac{33}{11}=3\)

=>\(x=3\cdot2=6;y=3\cdot3=9;z=3\cdot5=15\)

3: \(\dfrac{x}{y}=\dfrac{6}{5}\)

=>\(\dfrac{x}{6}=\dfrac{y}{5}\)

mà x+y=121

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{x+y}{6+5}=\dfrac{121}{11}=11\)

=>\(x=11\cdot6=66;y=11\cdot5=55\)

Duong Thi Nhuong
Xem chi tiết
Love Math
14 tháng 6 2017 lúc 7:43

\(\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\right]:\dfrac{x^3+y^3}{x^2y^2}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}.\dfrac{x+y}{xy}\right].\dfrac{x^2y^2}{x^3+y^3}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}\right].\dfrac{x^2y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\dfrac{y^2+x^2+2xy}{x^2y^2}.\dfrac{x^2y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\dfrac{\left(x+y\right)^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)

=\(=\dfrac{x+y}{x^2-xy+y^2}-\dfrac{x+y}{x^2-xy+y^2}=0\)

trang
Xem chi tiết
Nguyễn Hoàng Minh
29 tháng 12 2021 lúc 10:49

Bài 1:

\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)

Bài  2:

\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)