Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
xữ nữ của tôi
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 21:25

\(A=sin\left(\dfrac{7}{9}pi\right)+sin\left(\dfrac{pi}{9}\right)-sin\left(\dfrac{5}{9}pi\right)\)

\(=2\cdot sin\left(\dfrac{1}{2}\cdot\dfrac{8}{9}pi\right)\cdot cos\left(\dfrac{1}{2}\cdot\dfrac{6}{9}pi\right)-sin\left(\dfrac{5}{9}pi\right)\)

\(=sin\left(\dfrac{4}{9}pi\right)-sin\left(\dfrac{5}{9}pi\right)\)

\(=2\cdot cos\left(\dfrac{\dfrac{4}{9}pi+\dfrac{5}{9}pi}{2}\right)\cdot sin\left(\dfrac{\dfrac{4}{9}pi-\dfrac{5}{9}pi}{2}\right)\)

=0

xữ nữ của tôi
Xem chi tiết
Nguyễn Thu Phương
Xem chi tiết
tran gia vien
Xem chi tiết
Trần Minh Hoàng
6 tháng 5 2021 lúc 22:57

Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)

ooooook
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 4 2021 lúc 23:29

\(\pi< a< \dfrac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)

\(sin\left(\dfrac{7\pi}{2}+a\right)=sin\left(4\pi-\dfrac{\pi}{2}+a\right)=sin\left(-\dfrac{\pi}{2}+a\right)=-sin\left(\dfrac{\pi}{2}-a\right)=-cosa>0\)

Đáp án A

☯๖ۣۜHải☬Ⓢky™
Xem chi tiết
Tam Hai
20 tháng 10 lúc 18:59

Yes

Jelly303
Xem chi tiết
Ngô Thành Chung
4 tháng 8 2021 lúc 20:52

Xem lại đề bài đi

 

 

Hồng Phúc
4 tháng 8 2021 lúc 22:26

Đề sai nhiều chỗ vậy, lần sau ghi đúng đề đi.

\(cos3x+sin7x=2sin^2\left(\dfrac{\pi}{4}-\dfrac{5x}{2}\right)+2cos^2\dfrac{9x}{2}\)

\(\Leftrightarrow cos3x+sin7x=cos\left(\dfrac{\pi}{2}-5x\right)+1-2cos^2\dfrac{9x}{2}\)

\(\Leftrightarrow cos3x+sin7x=sin5x-cos9x\)

\(\Leftrightarrow2cos6x.cos3x+2cos6x.sinx=0\)

\(\Leftrightarrow2cos6x.\left(cos3x+sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos3x+cos\left(\dfrac{\pi}{2}-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\2cos\left(\dfrac{\pi}{4}+x\right).cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}cos6x=0\\cos\left(\dfrac{\pi}{4}+x\right)=0\\cos\left(2x-\dfrac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}6x=\dfrac{\pi}{2}+k\pi\\\dfrac{\pi}{4}+x=\dfrac{\pi}{2}+k\pi\\2x-\dfrac{\pi}{4}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+\dfrac{k\pi}{6}\\x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{3\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)