Tìm GTNN của
a. C= \(\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
b. D = \(\dfrac{x^6+512}{x^2+8}\)
Tìm GTNN của:
a) \(\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
b) \(\dfrac{x^6+512}{x^2+8}\)
tìm GTNN của
a, \(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
b, \(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
c, \(C=\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
d, \(D=\dfrac{x^6+512}{x^2+8}\)
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)
=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+1+4}\)
= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)
vì (x-1)2 ≥ 0 ∀ x
⇔ (x-1)2 +4 ≥ 4
⇔\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)
⇔\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)
⇔ A \(\le\dfrac{7}{2}\)
⇔ Min A =\(\dfrac{7}{2}\)
khi x-1=0
⇔ x=1
vậy ....
Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(B=2-\dfrac{3}{x^2-8x+16+6}\)
\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)
\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)
d)\(D=\dfrac{x^6+512}{x^2+8}\)
\(D=\dfrac{x^6+8x^4-8x^4-64x^2+64x^2+512}{x^2+8}\)
\(D=\dfrac{x^4\left(x^2+8\right)-8x^2\left(x^2+8\right)+64\left(x^2+8\right)}{x^2+8}\)
\(D=\dfrac{\left(x^2+8\right)\left(x^4-8x^2+64\right)}{x^2+8}\)
\(D=x^4-8x^2+64\)
\(D=\left(x^2-4\right)^2+48\ge48\)
\(\Rightarrow MIND=48\Leftrightarrow x=\pm2\)
Tìm max của:
C = \(\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
D = \(\dfrac{x^6+512}{x^2+8}\)
Bạn ơi hai phân thức này chỉ tìm được min thôi nhé, không tìm được max đâu.Nếu tìm min thì như sau:\(C=\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}=\dfrac{\left(x^2\right)^3+3^3}{x^4-3x^3+3x^2+3x^2-9x+9}=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{x^2\left(x^2-3x+3\right)+3\left(x^2-3x+3\right)}=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{\left(x^2+3\right)\left(x^2-3x+3\right)}=\dfrac{x^4-3x^2+9}{x^2-3x+3}\)\(C=\dfrac{x^4+6x^2+9-9x^2}{x^2-3x+3}=\dfrac{\left(x^2+3\right)^2-\left(3x\right)^2}{x^2-3x+3}=\dfrac{\left(x^2-3x+3\right)\left(x^2+3x+3\right)}{x^2-3x+3}=x^2+3x+3\)\(C=x^2+3x+3=x^2+2\times x\times\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{3}{4}\)
\(C=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu = xảy ra \(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=0\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy minC= 3/4 \(\Leftrightarrow\) x=-3/2
\(D=\dfrac{x^6+512}{x^2+8}=\dfrac{\left(x^2\right)^3+8^3}{x^2+8}=\dfrac{\left(x^2+8\right)\left(x^4-8x^2+64\right)}{x^2+8}\)
\(D=x^4-8x^2+64=x^4-8x^2+16+48\)
\(D=\left(x^2-4\right)^2+48\ge48\forall x\)
Dấu = xảy ra \(\Leftrightarrow\left(x^2-4\right)^2=0\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy minD= 48 \(\Leftrightarrow\) \(x=\pm2\)
tìm GTNN
C=\(\dfrac{x^6+27}{\text{x}^4-3x^3+6x^2-9x+9}\)
\(C=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{x^4+3x^2-3x^3-9x+3x^2+9}=\dfrac{\left(x^2+3\right)\left(x^4+6x^2+9-9x^2\right)}{\left(x^2+3\right)\left(x^2-3x+3\right)}\\ C=\dfrac{\left(x^2+3\right)^2-9x^2}{x^2-3x+3}=\dfrac{\left(x^2-3x+3\right)\left(x^2+3x+3\right)}{x^2-3x+3}\\ C=x^2+3x+3=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
tìm GTNN
A= X^6+27/(X^4-3X^3+6X^2-9X+9)
B= X^6+512/(X^2+8)
C=27-12X/(X^2+9)
D=8X+3/(4X^2+1)
Tìm GTNN của
a)\(A=\frac{3x^2-6x+17}{x^2-2x+5}\)
b)\(C=\frac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
c)\(D=\frac{x^6+512}{x^2+8}\)
Tìm max của:
C = \(\frac{x^6+27}{x^4-3x^3+6x^2-9x+9}\)
D = \(\frac{x^6+512}{x^2+8}\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)