Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Lê Thị Thục Hiền
15 tháng 6 2021 lúc 12:30

a1)\(\dfrac{sin110}{cos110}+\dfrac{cos20}{sin20}\)

\(=\dfrac{sin\left(180-70\right)}{cos\left(180-70\right)}+\dfrac{cos\left(90-70\right)}{sin\left(90-70\right)}\)

\(=\dfrac{sin70}{-cos70}+\dfrac{sin70}{cos70}=0\)

a2) \(sin^2x+sin^2\left(\dfrac{\pi}{3}-x\right)+sinx.sin\left(\dfrac{\pi}{3}-x\right)\)

\(=\dfrac{1}{2}\left(1-cos2x\right)+\dfrac{1}{2}\left[1-cos\left(\dfrac{2\pi}{3}-2x\right)\right]+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{3}\right)-cos\left(\dfrac{\pi}{3}\right)\right]\)

\(=\dfrac{1}{2}-\dfrac{1}{2}.cos2x+\dfrac{1}{2}-\dfrac{1}{2}.cos\left(\dfrac{2\pi}{3}-2x\right)+\dfrac{1}{2}.cos\left(2x-\dfrac{\pi}{3}\right)-\dfrac{1}{4}\)

\(=\dfrac{3}{4}-\dfrac{1}{2}\left[cos2x+cos\left(\dfrac{2\pi}{3}-2x\right)-cos\left(2x-\dfrac{\pi}{3}\right)\right]\)

\(=\dfrac{3}{4}-\dfrac{1}{2}\left[cos2x-2.sin\dfrac{\pi}{6}.sin\left(\dfrac{\pi-4x}{2}\right)\right]\)

\(=\dfrac{3}{4}-\dfrac{1}{2}\left(cos2x-cos2x\right)\)

\(=\dfrac{3}{4}\)

a3) \(sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)

\(=\dfrac{1-cos2x}{2}+\dfrac{1}{2}\left[cos\left(-2x\right)+cos\left(\dfrac{2\pi}{3}\right)\right]\)

\(=\dfrac{1-cos2x}{2}+\dfrac{cos2x}{2}-\dfrac{1}{4}\)

\(=\dfrac{1}{2}-\dfrac{1}{4}\)

\(=\dfrac{1}{4}\)

Nguyễn Minh Ngọc
Xem chi tiết
Khánh Quốc
29 tháng 7 2023 lúc 22:16

\(sin\left(x\right)+\left[sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{\pi}{5}\right)\right]+\left[sin\left(x+\dfrac{4\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)\right]\)

\(=sin\left(x\right)+2cos\left(x+\dfrac{3\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)+2cos\left(x+\dfrac{7\pi}{10}\right)sin\left(\dfrac{\pi}{10}\right)\)

\(=sin\left(x\right)+2sin\left(\dfrac{\pi}{10}\right)\left[cos\left(x+\dfrac{3\pi}{10}\right)+cos\left(x+\dfrac{7\pi}{10}\right)\right]\)

\(=sin\left(x\right)+4sin\left(\dfrac{\pi}{10}\right)cos\left(\dfrac{\pi}{5}\right)cos\left(x+\dfrac{\pi}{2}\right)\)

\(=sin\left(x\right)+cos\left(x+\dfrac{\pi}{2}\right)\)

\(=sin\left(x\right)+cos\left(x\right)cos\left(\dfrac{\pi}{2}\right)-sin\left(x\right)sin\left(\dfrac{\pi}{2}\right)\)

\(=sin\left(x\right)-sin\left(x\right)\)

\(=0\)

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 4 2022 lúc 14:27

\(A=\dfrac{1-cos2x}{2}+\dfrac{1-cos\left(\dfrac{2\pi}{3}-2x\right)}{2}+\dfrac{1}{2}cos\left(2x-\dfrac{\pi}{3}\right)-\dfrac{1}{2}cos\left(\dfrac{\pi}{3}\right)\)

\(=\dfrac{3}{4}-\dfrac{1}{2}cos2x+\dfrac{1}{2}\left(cos\left(2x-\dfrac{\pi}{3}\right)-cos\left(\dfrac{2\pi}{3}-2x\right)\right)\)

\(=\dfrac{3}{4}-cos2x-sin\left(\dfrac{\pi}{6}\right).sin\left(2x-\dfrac{\pi}{2}\right)\)

\(=\dfrac{3}{4}-cos2x+cos2x=\dfrac{3}{4}\)

 Huyền Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 21:35

\(P=\dfrac{sin2x+sinx}{\dfrac{1}{2}\cdot cosx\cdot sin2x+sin2x}=\dfrac{sinx\left(2cosx+1\right)}{sin2x\left(\dfrac{1}{2}cosx+1\right)}\)

\(=\dfrac{2cosx+1}{2\cdot cosx\cdot\left(\dfrac{1}{2}cosx+1\right)}\)

Kimian Hajan Ruventaren
Xem chi tiết
Lê Thùy Linh
2 tháng 5 2021 lúc 20:59

undefined

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:13

a: pi<x<3/2pi

=>cosx<0

=>\(cosx=-\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=-\dfrac{4}{5}\)

\(tanx=\dfrac{-3}{5}:\dfrac{-4}{5}=\dfrac{3}{4}\)

cot x=1:3/4=4/3

\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{-3}{5}\cdot\dfrac{-4}{5}=\dfrac{24}{25}\)

\(cos2x=1-2\cdot sin^2x=1-2\cdot\left(-\dfrac{3}{5}\right)^2=\dfrac{7}{25}\)

\(tan2x=\dfrac{24}{25}:\dfrac{7}{25}=\dfrac{24}{7}\)

cot 2x=1:24/7=7/24

b: \(sin\left(x+\dfrac{pi}{3}\right)=sinx\cdot cos\left(\dfrac{pi}{3}\right)+sin\left(\dfrac{pi}{3}\right)\cdot cosx\)

\(=\dfrac{-3}{5}\cdot\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{-4}{5}=\dfrac{-3-4\sqrt{3}}{10}\)

Nguyễn Minh Ngọc
Xem chi tiết

Ta có: \(\sin x+\sin\left(x+\frac45\pi\right)\)

\(=2\cdot\sin\left(\frac{x+x+\frac45\pi}{2}\right)\cdot cos\left(\frac{x+\frac45\pi-x}{2}\right)=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac25\pi\right)\)

Ta có: \(\sin\left(x+\frac{\pi}{5}\right)+\sin\left(x+\frac35\pi\right)\)

\(=2\cdot\sin\left(\frac{x+\frac{\pi}{5}+x+\frac35\pi}{2}\right)\cdot cos\left(\frac{x+\frac35\pi-x-\frac{\pi}{5}}{2}\right)\)

\(=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac{\pi}{5}\right)\)

Ta có: \(Q=\sin x-\sin\left(x+\frac{\pi}{5}\right)+\sin\left(x+\frac25\pi\right)-\sin\left(x+\frac35\pi\right)+\sin\left(x+\frac45\pi\right)\)

\(=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac25\pi\right)-2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac{\pi}{5}\right)+\sin\left(x+\frac25\pi\right)\)

\(=\sin\left(x+\frac25\pi\right)\left\lbrack2\cdot cos\left(\frac25\pi\right)-2\cdot cos\left(\frac{\pi}{5}\right)+1\right\rbrack\)

\(=\sin\left(x+\frac25\pi\right)\cdot\left\lbrack2\cdot\left(2\cdot cos^2\left(\frac{\pi}{5}\right)-1\right)-2\cdot cos\left(\frac{\pi}{5}\right)+1\right\rbrack\)

\(=\sin\left(x+\frac25\pi\right)\cdot\left\lbrack4\cdot cos^2\left(\frac{\pi}{5}\right)-2\cdot cos\left(\frac{\pi}{5}\right)-1\right\rbrack\)

Dựng ΔABC cân tại A, \(\hat{BAC}=36^0\) ; BC=1

Gọi BD là phân giác của góc ABC(D∈AC)

ΔABC cân tại A

=>\(\hat{ABC}=\hat{ACB}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-36^0}{2}=72^0\)

BD là phân giác của góc ABC

=>\(\hat{ABD}=\hat{DBC}=\frac12\cdot\hat{ABC}=36^0\)

Xét ΔBDC có \(\hat{BDC}+\hat{BCD}+\hat{DBC}=180^0\)

=>\(\hat{BDC}=180^0-36^0-72^0=72^0\)

Xét ΔDAB có \(\hat{DAB}=\hat{DBA}\left(=36^0\right)\)

nên ΔDAB cân tại D

=>DA=DB

Xét ΔBDC có \(\hat{BDC}=\hat{BCD}=72^0\)

nên ΔBDC cân tại B

=>BD=BC=1

=>DA=DB=BC=1

Kẻ DH⊥AB tại H

ΔDAB cân tại D

mà DH là đường cao

nên H là trung điểm của AB

=>HA=HB=x

Xét ΔHAD vuông tại H có cos A\(=\frac{AH}{AD}=x\)

=>\(cosA=\frac{x}{AD}=x\)

DA+DC=AC

=>DC=AC-DA=AB-DA=2x-1

AC=AD+DC=1+2x-1=2x

=>AB=2x

Xét ΔBAC có BD là phân giác

nên \(\frac{DC}{DA}=\frac{BC}{BA}\)

=>\(\frac{2x-1}{1}=\frac{1}{2x}\)

=>2x(2x-1)=1

=>\(4x^2-2x-1=0\)

=>\(x^2-\frac12x-\frac14=0\)

=>\(x^2-2\cdot x\cdot\frac14+\frac{1}{16}-\frac{5}{16}=0\)

=>\(\left(x-\frac14\right)^2=\frac{5}{16}\)

=>\(x-\frac14=\frac{\sqrt5}{4}\)

=>\(x=\frac{\sqrt5+1}{4}\)

=>\(cos36=\frac{\sqrt5+1}{4}\)

=>\(cos\left(\frac{\pi}{5}\right)=\frac{\sqrt5+1}{4}\)

\(4\cdot cos^2\left(\frac{\pi}{5}\right)-2\cdot cos\left(\frac{\pi}{5}\right)-1\)

\(\)\(=4\cdot\left(\frac{\sqrt5+1}{4}\right)^2-2\cdot\frac{\sqrt5+1}{4}-1\)

\(=\frac{4\cdot\left(6+2\sqrt5\right)}{16}-\frac{\sqrt5+1}{2}-1=\frac{8\left(3+\sqrt5\right)}{16}-\frac{\sqrt5+1}{2}-1\)

\(=\frac{3+\sqrt5}{2}-\frac{\sqrt5+1}{2}-1=\frac{3+\sqrt5-\sqrt5-1}{2}-1=\frac22-1=0\)

=>Q=0

=>Q không phụ thuộc vào biến x

títtt
Xem chi tiết
2611
22 tháng 8 2023 lúc 20:25

`a)sin x =4/3`

`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`

`b)sin 2x=-1/2`

`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`

`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}`    `(k in ZZ)`

`c)sin(x - \pi/7)=sin` `[2\pi]/7`

`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`

`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}`     `(k in ZZ)`

`d)2sin (x+pi/4)=-\sqrt{3}`

`<=>sin(x+\pi/4)=-\sqrt{3}/2`

`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`

`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}`    `(k in ZZ)`

Nguyễn Lê Phước Thịnh
22 tháng 8 2023 lúc 20:21

a: sin x=4/3

mà -1<=sinx<=1

nên \(x\in\varnothing\)

b: sin 2x=-1/2

=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi

=>x=-1/12pi+kpi và x=7/12pi+kpi

c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)

=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi

=>x=3/7pi+k2pi và x=pi+k2pi

d: 2*sin(x+pi/4)=-căn 3

=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)

=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi

=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 19:25

a: pi/2<x<pi

=>cosx<0

=>\(cosx=-\sqrt{1-\left(\dfrac{1}{5}\right)^2}=-\dfrac{2\sqrt{6}}{5}\)

\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{5}\cdot\dfrac{-2\sqrt{6}}{5}=\dfrac{-4\sqrt{6}}{25}\)

\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{24}{25}-1=\dfrac{48}{25}-1=\dfrac{23}{25}\)

\(tan2x=-\dfrac{4\sqrt{6}}{25}:\dfrac{23}{25}=-\dfrac{4\sqrt{6}}{23}\)

\(cot2x=1:\dfrac{-4\sqrt{6}}{23}=\dfrac{-23}{4\sqrt{6}}\)

b: \(sin\left(x-\dfrac{pi}{6}\right)=sinx\cdot cos\left(\dfrac{pi}{6}\right)-cosx\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=sinx\cdot\dfrac{\sqrt{3}}{2}-cosx\cdot\dfrac{1}{2}\)

\(=\dfrac{1}{5}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{-2\sqrt{6}}{5}\cdot\dfrac{1}{2}=\dfrac{\sqrt{3}+2\sqrt{6}}{10}\)

c: \(cos\left(x-\dfrac{pi}{3}\right)=cosx\cdot cos\left(\dfrac{pi}{3}\right)+sinx\cdot sin\left(\dfrac{pi}{3}\right)\)

\(=-\dfrac{2\sqrt{6}}{5}\cdot\dfrac{1}{2}+\dfrac{1}{5}\cdot\dfrac{1}{2}=\dfrac{-2\sqrt{6}+1}{10}\)

d: \(tan\left(x-\dfrac{pi}{4}\right)=\dfrac{tanx-tan\left(\dfrac{pi}{4}\right)}{1+tanx\cdot tan\left(\dfrac{pi}{4}\right)}\)

\(=\dfrac{tanx-1}{1+tanx}\)

\(=\dfrac{\dfrac{1}{-2\sqrt{6}}-1}{1+\dfrac{1}{-2\sqrt{6}}}=\dfrac{-25-4\sqrt{6}}{23}\)

HaNa
19 tháng 8 2023 lúc 19:25