Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Ngọc

Chứng minh biểu thức sau không phụ thuộc vào x: 
Q = \(sinx-sin\left(x+\dfrac{\pi}{5}\right)+sin\left(x+\dfrac{2\pi}{5}\right)-sin\left(x+\dfrac{3\pi}{5}\right)+sin\left(x+\dfrac{4\pi}{5}\right)\)

Ta có: \(\sin x+\sin\left(x+\frac45\pi\right)\)

\(=2\cdot\sin\left(\frac{x+x+\frac45\pi}{2}\right)\cdot cos\left(\frac{x+\frac45\pi-x}{2}\right)=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac25\pi\right)\)

Ta có: \(\sin\left(x+\frac{\pi}{5}\right)+\sin\left(x+\frac35\pi\right)\)

\(=2\cdot\sin\left(\frac{x+\frac{\pi}{5}+x+\frac35\pi}{2}\right)\cdot cos\left(\frac{x+\frac35\pi-x-\frac{\pi}{5}}{2}\right)\)

\(=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac{\pi}{5}\right)\)

Ta có: \(Q=\sin x-\sin\left(x+\frac{\pi}{5}\right)+\sin\left(x+\frac25\pi\right)-\sin\left(x+\frac35\pi\right)+\sin\left(x+\frac45\pi\right)\)

\(=2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac25\pi\right)-2\cdot\sin\left(x+\frac25\pi\right)\cdot cos\left(\frac{\pi}{5}\right)+\sin\left(x+\frac25\pi\right)\)

\(=\sin\left(x+\frac25\pi\right)\left\lbrack2\cdot cos\left(\frac25\pi\right)-2\cdot cos\left(\frac{\pi}{5}\right)+1\right\rbrack\)

\(=\sin\left(x+\frac25\pi\right)\cdot\left\lbrack2\cdot\left(2\cdot cos^2\left(\frac{\pi}{5}\right)-1\right)-2\cdot cos\left(\frac{\pi}{5}\right)+1\right\rbrack\)

\(=\sin\left(x+\frac25\pi\right)\cdot\left\lbrack4\cdot cos^2\left(\frac{\pi}{5}\right)-2\cdot cos\left(\frac{\pi}{5}\right)-1\right\rbrack\)

Dựng ΔABC cân tại A, \(\hat{BAC}=36^0\) ; BC=1

Gọi BD là phân giác của góc ABC(D∈AC)

ΔABC cân tại A

=>\(\hat{ABC}=\hat{ACB}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-36^0}{2}=72^0\)

BD là phân giác của góc ABC

=>\(\hat{ABD}=\hat{DBC}=\frac12\cdot\hat{ABC}=36^0\)

Xét ΔBDC có \(\hat{BDC}+\hat{BCD}+\hat{DBC}=180^0\)

=>\(\hat{BDC}=180^0-36^0-72^0=72^0\)

Xét ΔDAB có \(\hat{DAB}=\hat{DBA}\left(=36^0\right)\)

nên ΔDAB cân tại D

=>DA=DB

Xét ΔBDC có \(\hat{BDC}=\hat{BCD}=72^0\)

nên ΔBDC cân tại B

=>BD=BC=1

=>DA=DB=BC=1

Kẻ DH⊥AB tại H

ΔDAB cân tại D

mà DH là đường cao

nên H là trung điểm của AB

=>HA=HB=x

Xét ΔHAD vuông tại H có cos A\(=\frac{AH}{AD}=x\)

=>\(cosA=\frac{x}{AD}=x\)

DA+DC=AC

=>DC=AC-DA=AB-DA=2x-1

AC=AD+DC=1+2x-1=2x

=>AB=2x

Xét ΔBAC có BD là phân giác

nên \(\frac{DC}{DA}=\frac{BC}{BA}\)

=>\(\frac{2x-1}{1}=\frac{1}{2x}\)

=>2x(2x-1)=1

=>\(4x^2-2x-1=0\)

=>\(x^2-\frac12x-\frac14=0\)

=>\(x^2-2\cdot x\cdot\frac14+\frac{1}{16}-\frac{5}{16}=0\)

=>\(\left(x-\frac14\right)^2=\frac{5}{16}\)

=>\(x-\frac14=\frac{\sqrt5}{4}\)

=>\(x=\frac{\sqrt5+1}{4}\)

=>\(cos36=\frac{\sqrt5+1}{4}\)

=>\(cos\left(\frac{\pi}{5}\right)=\frac{\sqrt5+1}{4}\)

\(4\cdot cos^2\left(\frac{\pi}{5}\right)-2\cdot cos\left(\frac{\pi}{5}\right)-1\)

\(\)\(=4\cdot\left(\frac{\sqrt5+1}{4}\right)^2-2\cdot\frac{\sqrt5+1}{4}-1\)

\(=\frac{4\cdot\left(6+2\sqrt5\right)}{16}-\frac{\sqrt5+1}{2}-1=\frac{8\left(3+\sqrt5\right)}{16}-\frac{\sqrt5+1}{2}-1\)

\(=\frac{3+\sqrt5}{2}-\frac{\sqrt5+1}{2}-1=\frac{3+\sqrt5-\sqrt5-1}{2}-1=\frac22-1=0\)

=>Q=0

=>Q không phụ thuộc vào biến x


Các câu hỏi tương tự
Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
myyyy
Xem chi tiết
myyyy
Xem chi tiết
títtt
Xem chi tiết
myyyy
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
títtt
Xem chi tiết
myyyy
Xem chi tiết