Bạn xem lại đề hộ mình với. Đây là đẳng thức chứ k phải biểu thức.
Bạn xem lại đề hộ mình với. Đây là đẳng thức chứ k phải biểu thức.
Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
rút gọn:
cos(\(\dfrac{3\pi}{2}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))
Rút gọn đơn giản biểu thức A = cos(x-π/2)+sin(x-π)
B = cos (5π/2-x) + sin(9π/2-x) -cos(15π/2+x) -sin(35π/2+x)
Rút gọn biểu thức sau:
\(A=sin\left(\frac{\pi}{2}-x\right)+3cos\left(x-\pi\right)-2sin\left(x+\frac{\pi}{2}\right)-5cos\left(7\pi-x\right)\)
a) Cho tan x=3 và \(\frac{\pi}{6}\)∠x∠\(\frac{\pi}{3}\) . Tính giá trị của biểu thức B =\(\frac{\cos^2x+\cot^2x}{\tan x-\cot x}\)
b) Cho cos α=\(\frac{-4}{5}\) và \(\frac{\pi}{2}\)∠α∠\(\pi\) . Tính giá trị của biểu thức A=\(\frac{3\sin2\alpha-\tan2\alpha}{\cos\alpha-\cos2\alpha}\)
c) Cho tan x=-2 và\(\frac{3\pi}{2}\)∠x∠\(2\pi\) . Tính giá trị của biểu thức B=\(\frac{\cos^2x+\sin2x}{\tan2x-\cos2x}\)
Câu 1: cho sin a = -\(\dfrac{3}{5}\) và \(\pi\) < a< \(\dfrac{3\pi}{2}\) . Tính giá trị sin (a +\(\dfrac{\pi}{3}\))
Câu 2: Trong mặt phẳng Oxy, cho điểm I ( 1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A, B sao cho AB= 2
giúp mk vs nhé!
cho \(\cos\alpha=\dfrac{-12}{13}\) biết \(\pi< \alpha< \dfrac{3\pi}{2}\)
tính \(\sin\alpha,cos2\alpha,tan\left(\alpha-\dfrac{\pi}{3}\right),sin\left(2\alpha+\dfrac{\pi}{6}\right)\)
Bài 1 : Chứng minh rằng
a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)
b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)
Bài 2 : Chứng minh các biểu thức sau độc lập với biến x
A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)
B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)
Bài 3 : Tính giá trị các biểu thức lượng giác
A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2
B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6
Bài 4 : Tính giá trị các biểu thức lượng giác
A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)
B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)
Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :
a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)
b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)
Tính \(B=sin\dfrac{7\pi}{6}+cos9\pi+tan\left(\dfrac{-5\pi}{4}\right)+cot\dfrac{7\pi}{2}\)