Chứng minh đẳng thức: \(\dfrac{tan\left(\alpha-\dfrac{\pi}{2}\right).cos\left(\dfrac{3\pi}{2}+\alpha\right)-sin^3\left(\dfrac{7\pi}{2}-\alpha\right)}{cos\left(\alpha-\dfrac{\pi}{2}\right).tan\left(\dfrac{3\pi}{2}+\alpha\right)}=sin^2\alpha\)
cho \(\cos\alpha=\dfrac{-12}{13}\) biết \(\pi< \alpha< \dfrac{3\pi}{2}\)
tính \(\sin\alpha,cos2\alpha,tan\left(\alpha-\dfrac{\pi}{3}\right),sin\left(2\alpha+\dfrac{\pi}{6}\right)\)
Rút gọn các biểu thức sau :
a) A= 3sin(11\(\pi\) -x) sin(\(\frac{5\pi}{2}-x\)) +2sin(9\(\pi\)+x)
b) B=sin(1980\(^o\)+x)-cos(90\(^o\) -x)+tan(\(270^o-x\)) +cot (360\(^o\) -x)
c) C=-2sin(\(\frac{-5\pi}{2}\)+x)-3cos(3\(\pi\)-x)+5sin(\(\frac{7\pi}{2}\)-x)+cot(\(\frac{3\pi}{2}\)-x)
d) D=tan(x-\(\pi\)) cos (x-\(\frac{\pi}{2}\))cos(x+\(\pi\))
e) E=cos(\(\frac{115\pi}{2}-x\))+sin(\(x-\frac{235\pi}{2}\))+cos(x-\(\frac{187\pi}{2}\))+sin(\(\frac{143\pi}{2}-x\))
f) F= cot(x-\(107\pi\)) cos(x-\(\frac{303\pi}{2}\))+cos(x+1008\(\pi\))-3sin(x-1019\(\pi\))
g) G=cot(19\(\pi\)-x)+cos(x-37\(\pi\))+sin(\(-\frac{31\pi}{2}-x\))+tan(x-\(\frac{47\pi}{2}\))
h) H=cos(1170\(^o\)+x)+2sin(x-540\(^o\))-tan(630\(^o\)+x) cot(810\(^o\)-x)
i) I=\(\frac{sin\left(\pi-x\right)cos\left(x-\frac{9\pi}{2}\right)tan\left(9\pi+x\right)}{cos\left(7\pi-x\right)sin\left(\frac{7\pi}{2}-x\right)cot\left(x-\frac{17\pi}{2}\right)}\)
Các bạn rút gọn hộ mình với ạ
\(B=\frac{\sin\left(-4,8\pi\right)\sin\left(-5,7\pi\right)}{\cot\left(-5,2\pi\right)}+\frac{\cos\left(-6,7\pi\right)\cos\left(-5,8\pi\right)}{\tan\left(-6,2\pi\right)}\)
cho tan\(\alpha\)= \(\dfrac{-7}{3}\) với \(\dfrac{3\pi}{2}< \alpha< 2\pi\). tính các giá trị lượng giác của\(\alpha\)
Câu 1: cho sin a = -\(\dfrac{3}{5}\) và \(\pi\) < a< \(\dfrac{3\pi}{2}\) . Tính giá trị sin (a +\(\dfrac{\pi}{3}\))
Câu 2: Trong mặt phẳng Oxy, cho điểm I ( 1; -1) và đường thẳng d: x+y+2=0. Viết phương trình đường tròn tâm I cắt d tại hai điểm phân biệt A, B sao cho AB= 2
giúp mk vs nhé!
a) Cos x =\(\frac{1}{3}\),\(0< x< \Pi\)
Tính \(cos\left(x+2020\Pi\right)\),\(tan\left(x+2020\Pi\right)\)
b)\(Sinx=\frac{-1}{5},\frac{\Pi}{2}< x< \Pi\)
Tính \(sin\left(x+2020\Pi\right)\),\(cot\left(x+2020\Pi\right)\)
cho cot α=\(\dfrac{1}{2}\)(π<α<\(\dfrac{3\pi}{2}\)) thì sin2α.cosα có giá trị bằng?
rút gọn:
cos(\(\dfrac{3\pi}{2}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))