§2. Giá trị lượng giác của một cung

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quỳnh

Rút gọn các biểu thức sau :

a) A= 3sin(11\(\pi\) -x) sin(\(\frac{5\pi}{2}-x\)) +2sin(9\(\pi\)+x)

b) B=sin(1980\(^o\)+x)-cos(90\(^o\) -x)+tan(\(270^o-x\)) +cot (360\(^o\) -x)

c) C=-2sin(\(\frac{-5\pi}{2}\)+x)-3cos(3\(\pi\)-x)+5sin(\(\frac{7\pi}{2}\)-x)+cot(\(\frac{3\pi}{2}\)-x)

d) D=tan(x-\(\pi\)) cos (x-\(\frac{\pi}{2}\))cos(x+\(\pi\))

e) E=cos(\(\frac{115\pi}{2}-x\))+sin(\(x-\frac{235\pi}{2}\))+cos(x-\(\frac{187\pi}{2}\))+sin(\(\frac{143\pi}{2}-x\))

f) F= cot(x-\(107\pi\)) cos(x-\(\frac{303\pi}{2}\))+cos(x+1008\(\pi\))-3sin(x-1019\(\pi\))

g) G=cot(19\(\pi\)-x)+cos(x-37\(\pi\))+sin(\(-\frac{31\pi}{2}-x\))+tan(x-\(\frac{47\pi}{2}\))

h) H=cos(1170\(^o\)+x)+2sin(x-540\(^o\))-tan(630\(^o\)+x) cot(810\(^o\)-x)

i) I=\(\frac{sin\left(\pi-x\right)cos\left(x-\frac{9\pi}{2}\right)tan\left(9\pi+x\right)}{cos\left(7\pi-x\right)sin\left(\frac{7\pi}{2}-x\right)cot\left(x-\frac{17\pi}{2}\right)}\)

Hanako-kun
11 tháng 5 2020 lúc 23:15

Nhìn đề bài hãi quá :(

a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)

\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)

\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)

b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)

\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)

\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)

c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)

\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)

Hanako-kun
11 tháng 5 2020 lúc 23:38

d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)

\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)

\(D=-\tan x.\sin x.\cos x=-\sin^2x\)

e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)

\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)

\(E=-2\sin x\)

Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(

Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi

Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.

Còn tách mấy cái phân số như vầy:

Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)

Đó, thế là được :D


Các câu hỏi tương tự
Ngô Chí Thành
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
NguyenThanhLoc
Xem chi tiết
Lưu Ngọc Bảo Linh
Xem chi tiết
Ngô Hằng
Xem chi tiết
Lê Thanh Tuyền
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Nguyễn Quỳnh
Xem chi tiết
Julian Edward
Xem chi tiết