Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rosie
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Lê Phương Mai
6 tháng 2 2022 lúc 10:54

Refer:

a² + b² + c² + d² + e² ≥ a(b + c + d + e)

Ta có: a² + b² + c² + d² + e²= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²)

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab

Tương tự ta có:. a²/4 + c² ≥ ac.

a²/4 + d² ≥ ad.

a²/4 + e² ≥ ae

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e)

=> đpcm.

Dấu " = " xảy ra <=> a/2 = b = c = d = e.

vũ thúy hằng
Xem chi tiết
Vương Quốc Anh
7 tháng 12 2015 lúc 14:27

Bạn đánh lại đề đi, Để ghi dấu mũ bạn ấn nút "x2" trên thanh công cụ, sau khi bạn gõ xong dấu mũ rồi bạn ấn lại nó để đưa về trạng thái thường

Vương Quốc Anh
7 tháng 12 2015 lúc 13:59

\(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

Vậy \(\frac{\left(a+b\right)2}{\left(c+d\right)2}=\frac{2a+2b}{2c+2d}\)

trần vũ hoàng phúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 6 2023 lúc 20:39

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

Nguyễn Hoàng Duy
8 tháng 6 2023 lúc 22:13

Xét hiệu a^2+b^2+c^2-ab-ac-bc=1/2.2(a^2+b^2+c^2-ab-ac-bc)

=1/2(2a^2+2b^2+2c^2-2ab-2ac-2bc)

=1/2[(a^2-2ab+b^2)+(a^2-2ac+c^2)+(b^2-2bc+c^2)]
=1/2.[(a-b)^2+(a-c)^2+(b-c)^2]

vì (a-b)^2+(a-c)^2+(b-c)^2>=0
nên 1/2.[(a-b)^2+(a-c)^2+(b-c)^2]>=0
hay a^2+b^2+c^2-ab-ac-bc >=0<=> a^2+b^2+c^2>=ab+ac+bc

Lê Đông Thành
Xem chi tiết
Lê Đông Thành
15 tháng 10 2021 lúc 11:08

Ai giúp gấp nhé:D

 

Nguyễn Bảo Anh
15 tháng 10 2021 lúc 11:16

Ta có : a2 + b2 = c2 + d2

a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) 2 nên là hợp số

Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d ) 

= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) 2

a + b + c + d 2 nên cũng là hợp số

OH-YEAH^^
15 tháng 10 2021 lúc 11:17

Ta có: \(a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+a^2+b^2=a^2+b^2+c^2+d^2\)

\(\Rightarrow2\left(a^2+b^2\right)=a^2+b^2+c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2\) là chẵn

Xét hiệu: \(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

Mà tích 2 số TN liên tiếp là chẵn

⇒ Tổng a+b+c+d là chẵn

Vì \(a+b+c+d>2\) với mọi số TN a,b,c,d khác 0

⇒ a+b+c+d là hợp số

Kudo conan
Xem chi tiết
Vu the nhat minh Vu
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 1 2024 lúc 21:24

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{c}{d}\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)

Nguyễn Văn Quân
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Phạm Ngọc Bích
17 tháng 1 2022 lúc 16:23
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Khách vãng lai đã xóa
chuột nhà
Xem chi tiết
I don
13 tháng 6 2020 lúc 20:37

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

Khách vãng lai đã xóa
I don
13 tháng 6 2020 lúc 20:44

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

Khách vãng lai đã xóa
I don
13 tháng 6 2020 lúc 19:42

Bài1:

Ta có: a2+ b2+c2+d2= a.(b+c+d)

=> a2+b2+c2+d2 -ab -ac -ad =0

=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0

=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0

=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0

=> ....

KL: a=b=c=d=0

Khách vãng lai đã xóa