cho a2 + b2 ≤ 1. Chứng minh rằng ( ac + bd - 1 )2 ≥ ( a2 + b2 - 1 )(c2 + d2 -1 )
Cho 3 số dương a,b,c thỏa mãn a2 + b2 + c2 = 1
CMR : \(\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\) ≥ \(\dfrac{3\sqrt{3}}{2}\)
Chứng minh bằng phản chứng:
a) a, b, c thuộc ( 0; 1). CMR có ít nhất 1 bất đẳng thức sai:
a(1- b) > 1/4 ; b( 1- c) > 1/4 ; c(1- a) > 1/4
b) Cho: x^2 + x(a1) +b1=0 ;
x^2 + x(a2) + b2=0 . Thỏa mãn (a1)(a2) lớn hơn hoặc bằng ( b1 + b2)
b CMR: ít nhất 1 phương trình có nghiệm.
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Cho b > c > d Chứng minh rằng : ( a + b + c )2 > 8( ac + bd ) với mọi a
cho các số thực a,b,c>=0 thỏa mãn a+b+c=1.Chứng minh rằng:1/(1-a)+1/(1-b)+1/(1-c)>=2/(1+a)+2/(1+b)+2/(1+c)
Cho a,b,c,d là các số thực thỏa mãn \(a^2+b^2=2,c^2+d^2+25=6c+8d\). Tìm GTLN của P=3c+4d-(ac+bd)
Cho a,b,c >0 thỏa a+b+c=3.Chứng minh rằng
\(\dfrac{a}{ab+1}+\dfrac{b}{bc+1}+\dfrac{c}{ca+1}\ge\dfrac{3}{2}\)
Cho ba số thực dương a, b, c thỏa mãn a+b+c=3. Chứng minh rằng
\(a^3+b^3+c^3+ab+ac+bc\ge6\)