Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Thảo Vi

Bất đẳng thức Bunhiacopxki

B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)

B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)

B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)

Akai Haruma
8 tháng 3 2021 lúc 21:32

Bài 1:

Áp dụng BĐT Bunhiacopxky ta có:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$

$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:36

Bài 2: 

Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$

$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$

$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$

$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>

 

Bình luận (0)
Akai Haruma
8 tháng 3 2021 lúc 21:38

Bài 3:

Áp dụng BĐT Bunhiacopxky:

$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$

$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$

$=2+a+b\leq 2+\sqrt{2}$

$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$

 

Bình luận (0)

Các câu hỏi tương tự
Kinder
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Thảo Vi
Xem chi tiết
vung nguyen thi
Xem chi tiết
Neet
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Thảo Vi
Xem chi tiết
Serena chuchoe
Xem chi tiết