Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)
Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:
$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$
$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.
Áp dụng BĐT AM-GM:
\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)
\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)
\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)
\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)
Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)
Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:
$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$
$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.
Áp dụng BĐT AM-GM:
\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)
\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)
\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)
\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)
Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$