Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Neet

Fix : Cho a,b,c thực dương thỏa \(a^2+b^2+c^2=1\).Cmr

\(1\le\dfrac{a}{1+bc}+\dfrac{b}{1+ca}+\dfrac{c}{1+ab}\le\dfrac{3\sqrt{3}}{4}\)

Lightning Farron
10 tháng 10 2017 lúc 22:19

Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:

\(VT=\dfrac{a^2}{a+abc}+\dfrac{b^2}{b+abc}+\dfrac{c^2}{c+abc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3abc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+\dfrac{\left(a+b+c\right)\left(ab+bc+ca\right)}{3}}=\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\)

Tức cần chứng minh \(\dfrac{3\left(a+b+c\right)}{3+ab+bc+ca}\ge1\)

\(\Leftrightarrow3\left(a+b+c\right)\ge3+ab+bc+ca\)

\(\Leftrightarrow9\left(a+b+c\right)^2\left(a^2+b^2+c^2\right)\ge\left(3\left(a^2+b^2+c^2\right)+ab+bc+ca\right)^2\)

Đặt \(a^2+b^2+c^2=k\left(ab+bc+ca\right)\left(k\ge1\right)\) và ta cần cm:

\(9(k+2)k\geq(3k+1)^2\)\(\Leftrightarrow12k-1\ge9\) *đúng với \(k\ge 1\) :|*

Nguyễn Huy Thắng
10 tháng 10 2017 lúc 22:07

Huê k ai làm à, để tui hốt luôn nhé :| \(a=b\rightarrow \frac{1}{\sqrt{2}};c->0^+\) thì \(VT\le\dfrac{3\sqrt{3}}{4}\) sai nên tui c/m nó $\ge$ 1 nhé


Các câu hỏi tương tự
Kinder
Xem chi tiết
Nguyen Ha
Xem chi tiết
Thảo Vi
Xem chi tiết
Thảo Vi
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
loancute
Xem chi tiết
Nguyễn Trần
Xem chi tiết
Neet
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết