Giải:
2/x-1/=6-/x-1/
Phép tính như sau: 6 : 2 x (1 + 2) = ?
Bạn A giải:
6 : 2 x (1+2) = 6 : 2 x 3 = 3 x 3 = 9
Bạn B giải:
6 : 2 x (1 + 2) = 6 : (2 x 1 + 2 x 2) = 6 : 6 = 1
Vậy ai giải đúng?
Bạn A giải đúng nhé vì phải thực hiện phép tính trong ngoặc trước cũng như từ phải sang trái .
`1)` Giải các pt `a)(x+2)/(x-3)+x/(x+2)=(x^{2}+6)/(x^{2}-x-6)` `b)(x+1)^{2}+|x-1|=x^{2}+4` `2)` Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số `1-(x-1)/3<(x+3)/3-(x-2)/2`
1.\(\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{x^2-x-6}\)
\(\Leftrightarrow\dfrac{x+2}{x-3}+\dfrac{x}{x+2}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)
\(ĐK:x\ne3;-2\)
\(\Leftrightarrow\dfrac{\left(x+2\right)\left(x+2\right)+x\left(x-3\right)}{\left(x+2\right)\left(x-3\right)}=\dfrac{x^2+6}{\left(x+2\right)\left(x-3\right)}\)
\(\Leftrightarrow\left(x+2\right)\left(x+2\right)+x\left(x-3\right)=x^2+6\)
\(\Leftrightarrow x^2+4x+4+x^2-3x-x^2-6=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)
b.\(\left(x+1\right)^2+\left|x-1\right|=x^2+4\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+x-1=x^2+4\) hoặc \(\left(x+1\right)^2+1-x=x^2+4\)
Xét \(\left(x+1\right)^2+x-1=x^2+4\)
\(\Leftrightarrow x^2+2x+1+x-1-x^2-4=0\)
\(\Leftrightarrow3x-4=0\)
\(\Leftrightarrow x=\dfrac{4}{3}\)
Xét \(\left(x+1\right)^2+1-x=x^2+4\)
\(\Leftrightarrow x^2+2x+1+1-x-x^2-4=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{\dfrac{4}{3};2\right\}\)
2.\(1-\dfrac{x-1}{3}< \dfrac{x+3}{3}-\dfrac{x-2}{2}\)
\(\Leftrightarrow\dfrac{6-2\left(x-1\right)}{6}< \dfrac{2\left(x+3\right)-3\left(x-2\right)}{6}\)
\(\Leftrightarrow6-2\left(x-1\right)< 2\left(x+3\right)-3\left(x-2\right)\)
\(\Leftrightarrow6-2x+2< 2x+6-3x+6\)
\(\Leftrightarrow-x< 4\)
\(\Leftrightarrow x>4\)
Vậy \(S=\left\{x|x>4\right\}\)
giải phương trình:
a)2x(3x-1)=6x^2-13
b)x/3-2x+1/6=x/6-x
c)x+1/x-1-x-1/x+1=x^2+3/x^2-1
a: \(\Leftrightarrow6x^2-2x=6x^2-13\)
=>-2x=-13
hay x=13/2
b: \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
=>2x-2x-1=x-6x
=>-5x=-1
hay x=1/5
c: \(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=x^2+3\)
\(\Leftrightarrow x^2+3-x^2-2x-1+x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=3
giải phương trình:
a)(x+6)(3x-1)=(x-6)(x+6)
b)(x+1)^2=(2x+3)^2
`a)(x+6)(3x-1)=(x-6)(x+6)`
`<=>(x+6)(3x-1+6-x)=0`
`<=>(x+6)(2x+5)=0`
`<=>[(x=-6),(x=-5/2):}`
`b)(x+1)^2=(2x+3)^2`
`<=>(x+1)^2-(2x+3)^2=0`
`<=>(x+1-2x-3)(x+1+2x+3)=0`
`<=>(-x-2)(3x+4)=0`
`<=>[(x=-2),(x=-4/3):}`
a)
`(x+6)(3x-1)=(x-6)(x+6)`
`<=> (x+6)(3x-1)-(x-6)(x+6)=0`
`<=> (x+6)(3x-1-x+6)=0`
`<=> (x+6)(2x+5)=0`
\(< =>\left[{}\begin{matrix}x+6=0\\2x+5=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)
b)
`(x+1)^2 =(2x+3)^2`
`<=> (x+1)^2 -(2x+3)^2 =0`
`<=> (x+1-2x-3)(x+1+2x+3)=0`
`<=> (-x-2)(3x+4)=0`
\(< =>\left[{}\begin{matrix}-x-2=0\\3x+4=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=-2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
`a)(x+6)(3x-1)=(x-6)(x+6)`
`<=> (x+6)(3x-1-x +6) =0`
`<=> (x+6)(2x+5)=0`
`<=> [(x+6=0),(2x=-5):}`
`<=>[(x=-6),(x=-5/2):}`
`b)(x+1)^2=(2x+3)^2`
`<=> (x+1)^2 - (2x+3)^2 =0`
`<=> (x+1 -2x -3)(x+1+2x +3) =0`
`<=> (-x - 2)(3x +4) =0`
`<=> (x+2)(3x +4) =0`
`<=> [(x =-2),(x =-4/3):}`
giải phương trình
2 x^3+9 x^2-6 x (1+2 sqrt(6 x-1))+2 sqrt(6 x-1)+8 = 0
giải phương trình 1/x-1+2/x-2+3/x-3=6/x+6
giải phương trình 1/x-1+2/x-2+3/x-3=6/x-6
Bạn kiểm tra lại đề nhé
Giải bất pt a.(2x-1)/3 < (x+6)/2
b.(5(x-1))/6 -1> (2(x+1)/3
\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)
\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)
\(\Leftrightarrow4x-2< 3x+18\)
\(\Leftrightarrow4x-3x< 2+18\)
\(\Leftrightarrow x< 20\)
\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)
\(\Leftrightarrow5x-11>4x+4\)
\(\Leftrightarrow5x-4x>11+4\)
\(\Leftrightarrow x>15\)
giải pt
\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)
`1/(3-x)-1/(x+1)=x/(x-3)-(x-1)^2/(x^2-2x-3)(x ne -1,3)`
`<=>(-x-1)/(x^2-2x-3)-(x-3)/(x^2-2x-3)=(x^2+x)/(x^2-2x-3)-(x-1)^2/(x^2-2x-3)`
`<=>-x-1-x+3=x^2+x-x^2+2x-1`
`<=>-2x+2=3x-1`
`<=>5x=3`
`<=>x=3/5`
Vậy `S={3/5}`
`1/(x-2)-6/(x+3)=6/(6-x^2-x)(x ne 2,-3)`
`<=>(x+3)/(x^2+x-6)-(6x-12)/(x^2+x-6)+6/(x^2+x-6)=0`
`<=>x+3-6x+12+6=0`
`<=>-5x+21=0`
`<=>x=21/5`
Vậy `S={21/5}`
a) ĐKXĐ: \(x\notin\left\{3;-1\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-3}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(-x-1-x+3=x^2+x-x^2+2x-1\)
\(\Leftrightarrow3x-1=-2x+2\)
\(\Leftrightarrow3x+2x=2+1\)
\(\Leftrightarrow5x=3\)
hay \(x=\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{\dfrac{3}{5}\right\}\)
Giải Phương Trình:
a)11/x = 9/x+1 + 2/x-4
b)14/3x-12 - 2+x/x-4 =3/8-2x -5/6
c)1/3-x - 1/x+1 =x/x-3 -(x-1)2/x2 -2x-3
d)1/x-2 - 6/x+3 = 5/6-x2 -x
Ai giải đc câu nào thì giải nha!!!
Giúp tui!