a,chứng minh AD//CF
b,chứng minh AD//BE
Cho tam giác ABC (AB < AC ) có ba góc nhọn, đường cao AD, BE, CF cát nhau tại H
a ) Chứng minh : tam giác CFB ~ tam giác ADB
b ) Chứng minh : AF. AB = AH . AD
c ) Chứng minh : tam giác AEF và tam giác ABC đồng dạng
Cho ΔABC (AB < AC). Có 3 góc nhọn, 3 đường cao AD, BE, CF cắt nhau tại H.
a> Chứng minh ΔCFB ∞ ΔADB
b> Chứng minh AF. AB=AH . AD
c> Chứng minh ΔBDF ∞ ΔBAC
d> Gọi M là trung điểm của BC. Chứng minh ∠EDB = ∠EMF
Lời giải:
a)
Xét tam giác $CFB$ và $ADB$ có:
\( \left\{\begin{matrix} \widehat{CFB}=\widehat{ADB}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle CFB\sim \triangle ADB(g.g) \)
b)
Xét tam giác $AFH$ và $ADB$ có:
\( \left\{\begin{matrix} \widehat{AFH}=\widehat{ADB}=90^0\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFH\sim \triangle ADB(g.g)\)
\(\Rightarrow \frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AF.AB=AD.AH\)
c)
Xét tam giác $ABD$ và $CBF$ có:
\( \left\{\begin{matrix} \widehat{ADB}=\widehat{CFB}\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle CBF(g.g)\)
\(\Rightarrow \frac{AB}{CB}=\frac{BD}{BF}\)
Xét tam giác $BDF$ và $BAC$ có:
\( \left\{\begin{matrix} \text{chung góc B}\\ \frac{BD}{BF}=\frac{BA}{BC}(cmt)\end{matrix}\right.\Rightarrow \triangle BDF\sim \triangle BAC(c.g.c)\)
d) Đề sai hiển nhiên.
Cho hình bình hành ABCD, E, F thuộc đường chéo BD, sao cho BE = DF
a/ Chứng minh AE // CF
b/ AE cắt BC tại K, CF cắt AD tại I. Chứng minh tứ giác AKCI là hình bình hành
a: Xét ΔAEB và ΔCFD có
AB=CD
\(\widehat{ABE}=\widehat{CDF}\)
BE=DF
Do đó: ΔAEB=ΔCFD
Suy ra: \(\widehat{AEB}=\widehat{CFD}\)
\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AE//CF
Cho tam giác ABC ( AB < AC ) có 3 góc nhọn, các đường cao AD, BE,CF cắt nhau tại H
a/ chứng minh tam giác CFB ~ tam giác ADB
b/ chứng minh AF . AB = AH . AD
c/ Chứng minh tam giác BDF ~ tam giác BAC
d/ gọi M là trung điểm của BC. Chứng minh góc EDF = góc EMF
a: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
góc FBC chung
Do đó: ΔBFC\(\sim\)ΔBDA
b: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
Do đó: ΔAFH\(\sim\)ΔADB
Suy ra: AF/AD=AH/AB
hay \(AF\cdot AB=AH\cdot AD\)
c: Ta có: ΔBDA\(\sim\)ΔBFC
nên BD/BF=BA/BC
=>BD/BA=BF/BC
Xét ΔBDF và ΔBAC có
BD/BA=BF/BC
góc DBF chung
Do đó: ΔBDF\(\sim\)ΔBAC
Cho tam giác abc nhọn có AD là đường cao. Đường tròn tâm O đường kính BC cắt AB và A lần lượt tại F và E.
1) Tinh số đo BEC va CFB
2) Chứng minh AD, BE, CF đồng qui
cho tam giác ABC có ba góc nhọn (AB<AC) vẽ ba đường cao AD,BE và CF cắt nhau tại H
a) chứng minh tam giác ABD đồng dạng với tam giác CFB và BF.BA=BD.BC
b) chứng minh tam giác BFD đồng dạng tam giác BCA
c) qua A vẽ đường thẳng xy song song BC. Tia DF cắt đường thẳng xy tại M . Gọi I là giao điểm của của MC và AD . chứng minh EI song song BC
đầu bài thiếu kìa bạn
cho tam giác ABC có ba góc nhọn (AB<AC) vẽ ba đường cao AD,BE và CF cắt nhau tại H
a) chứng minh tam giác ABD đồng dạng với tam giác CFB và BF.BA=BD.BC
b) chứng minh tam giác BFD đồng dạng tam giác BCA
c) qua A vẽ đường thẳng xy song song BC. Tia DF cắt đường thẳng xy tại M . Gọi I là giao điểm của của MC và AD . chứng minh EI song song BC
Cho tam giác ABC nhọn có AD và BE là hai đường cao cắt nhau tại H a, Chứng minh rằng: AD + BE < BC + AC b, Cho biết: AC < BC. Chứng minh rằng: HA < HB và AC + BE < BC + AD
a: ΔADC vuông tại D
=>AD<AC
ΔBEC vuông tại E
=>BE<BC
=>AD+BE<BC+AC
b: CA<CB
=>góc CAB>gócCBA
=>90 độ-góc CAB<90 độ-góc CBA
=>góc HBA<góc HAB
=>HA<HB
cho tam giác abc nhọn ab lớn hơn ac nội tiếp đường tròn đường kính ad đường cao cf và bg cắt nhau tại h kẻ oi vuông góc bc a) chứng minh tứ giác cgfb nội tiếp đường tròn b)chứng minh tam giác acd đồng dạng tam giác cfb c)chứng minh tứ giác chbd là hình bình hành và cd.cg=bd.bf d) chứng minh i,h,d thẳng hàng
a: Xét tứ giác CGFB có \(\widehat{CGB}=\widehat{CFB}=90^0\)
nên CGFB là tứ giác nội tiếp
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó: ΔACD vuông tại C
=>AC\(\perp\)CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>AB\(\perp\)BD
Xét (O) có
\(\widehat{ABC}\) là góc nội tiếp chắn cung AC
\(\widehat{ADC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{ABC}=\widehat{ADC}\)
Xét ΔACD vuông tại C và ΔCFB vuông tại F có
\(\widehat{ADC}=\widehat{CBF}\)
Do đó: ΔACD~ΔCFB
c: ta có: BH\(\perp\)AC
CD\(\perp\)AC
Do đó: BH//CD
Ta có: CH\(\perp\)AB
BD\(\perp\)BA
Do đó: CH//BD
Ta có: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
d: ta có: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
=>H,I,D thẳng hàng