a: Xét ΔAEB và ΔCFD có
AB=CD
\(\widehat{ABE}=\widehat{CDF}\)
BE=DF
Do đó: ΔAEB=ΔCFD
Suy ra: \(\widehat{AEB}=\widehat{CFD}\)
\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AE//CF
a: Xét ΔAEB và ΔCFD có
AB=CD
\(\widehat{ABE}=\widehat{CDF}\)
BE=DF
Do đó: ΔAEB=ΔCFD
Suy ra: \(\widehat{AEB}=\widehat{CFD}\)
\(\Leftrightarrow\widehat{AEF}=\widehat{EFC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên AE//CF
Cho hình bình hành ABCD có AB > AD . qua A kẻ đg thg vuông BD tại E , cắt CD tại I . qua CK kẻ đg thg vuông BD tại F , cắt AC tại K
1) Chứng minh : AE // CF và AE = CF
2) Tứ giác AECI là hình gì ? Vì sao ?
Cho hình bình hành ABCD có AB > AD . qua A kẻ đg thg vuông BD tại E , cắt CD tại I . qua C kẻ đg thg vuông BD tại F , cắt AC tại K
1) Chứng minh : AE // CF và AE = CF
2) Tứ giác AECI là hình gì ? Vì sao ?
Cho hình bình hành ABCD, Có hai đường chéo AC và BD cắt nhau tại O. Từ A kẻ AE vuông góc với BD, từ C kẻ CF vuông góc với BD. Chứng minh rằng Tứ giác AECF là hình bình hành.
Bài 4: Cho hình bình hành ABCD, hai đường chéo AC, BD cắt nhau tại O. Kẻ BH I AC tại H cắt DC tại N và kẻ DK 1 AC tại K cắt AB tại M. a) Chứng minh tứ giác BMDN là hình bình hành. b) Chứng minh tứ giác BKDH là hình bình hành. c) Chứng minh AC, BD, MN đồng quy.
Cho hình bình hành ABCD có đường chéo BD tại M , cắt CD tại E . Từ C kẻ đường thẳng vuông góc BD tại N , cắt AB tại F. Chứng minh rằng : a) tam giác AMD = tam giác CNB b) tứ giác AMCN là hình bình hành c) tứ giác AECF là hình bình hành ( CÓ HÌNH VẼ) GIÚP EM VỚI Ạ EM ĐANG CẦN GẤP
Cho hình bình hành ABCD (AB > AD). Kẻ AE//BD (E thuộc BD), CF//BD
(F thuộc BD). Chứng minh :
a) tam giác AED = tam giác CFB
b) AECF là hình bình hành
Cho hình bình hành ABCD . Trên cạnh AB lấy điểm E , trên cạnh CD lấy điểm F sao cho AE = CF. a / Chứng minh DE = BF b / Chứng minh tứ giác AECF là hình bình hành . c / Chứng minh tứ giác BEDF là hình bình hành
Cho hình bình hành ABCD (AB>AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C, kẻ đường thẳng vuông góc với BD tại F cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) CM: AF//CE
c) CM: AC, EF, KI đồng quy
Cho hình bình hành ABCD. Trên các cạnh AB, CD lần lượt lấy E,F sao cho AE=CF. Chứng minh rằng:
a) Tứ giác AECF là hình bình hành
b) BF//ED
c) Các đường thẳng AC; EF; BD đồng quy.