Giải hệ phương trình : \(\dfrac{x}{2}\) - \(\dfrac{y}{3}\) = 1
2x + y = 11
Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{x-1}{2x+1}-\dfrac{y-2}{y+2}=1\\\dfrac{3x-3}{2x+1}+\dfrac{2y-4}{y+2}=3\end{matrix}\right.\)
ĐKXĐ: x # -1/2; y # -2
\(Đặt\ \dfrac{x-1}{2x+1}=a; \dfrac{y-2}{y+2}=b \\Hệ\ tương\ đương: \\\begin{cases} a-b=1\\3a+2b=3 \end{cases} <=> \begin{cases} 3a-3b=3\\3a+2b=3 \end{cases} \\<=>\begin{cases} -5b=0\\a-b=1 \end{cases} <=>\begin{cases} b=0\\a=1 \end{cases} \\->\begin{cases} x-1=2x+1\\y-2=0 \end{cases} <=>\begin{cases} x=-2(thoả\ ĐKXĐ)\\y=2(thoả\ ĐKXĐ) \end{cases}\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+2y^2-4xy=11-\dfrac{1}{y}\left(2x+\dfrac{1}{y}\right)\\2x+\dfrac{1}{y}-y=4\end{matrix}\right.\)
DK:\(y\ne0\)
PT (1) :\(3x^2+2y^2-4xy=11-\dfrac{1}{y}\left(2x+\dfrac{1}{y}\right)\)
\(\Leftrightarrow\left(x^2+\dfrac{2x}{y}+\dfrac{1}{y^2}\right)+2\left(x^2-2xy+y^2\right)=11\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)^2+2\left(x-y\right)^2=11\)
PT (2): \(2x+\dfrac{1}{y}-y=4\)
\(\Leftrightarrow\left(x+\dfrac{1}{y}\right)+\left(x-y\right)=4\)
Đặt \(a=x+\dfrac{1}{y};b=x-y\)
Hệ pt tt: \(\left\{{}\begin{matrix}a^2+2b^2=11\\a+b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(4-b\right)^2+2b^2=11\\a=4-b\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}b=\dfrac{5}{3}\\b=1\end{matrix}\right.\\a=4-b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}b=\dfrac{5}{3}\\a=\dfrac{7}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}b=1\\a=3\end{matrix}\right.\end{matrix}\right.\)
TH1: \(a=\dfrac{7}{3};b=\dfrac{5}{3}\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=\dfrac{7}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=\dfrac{2}{3}\\x-y=\dfrac{5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y^2-2y+3=0\left(vn\right)\\x-y=\dfrac{5}{3}\end{matrix}\right.\)
TH2:\(a=3;b=1\)\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{y}=3\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}+y=2\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y^2-2y+1=0\\x-y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\) (thỏa mãn hệ)
Vậy hệ có nghiệm duy nhất (x;y)=(2;1).
GIẢI HỆ PHƯƠNG TRÌNH: \(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\X-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x-y}{3}=x+y+1\\x-3y-5=\dfrac{2x-y}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y=3\left(x+y+1\right)\\2\left(x-3y-5\right)=2x-y\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-y-3x-3y=3\\2x-6y-10-2x+y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-x-4y=3\\-5y=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x+4y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-2\\x=-3-4y=-3-4\cdot\left(-2\right)=8-3=5\end{matrix}\right.\)
giải hệ phương trình
1)\(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\) 2)\(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\) 3)\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}-x+3y=16\\2x+y=3\end{matrix}\right.\) 5)\(\left\{{}\begin{matrix}\dfrac{-3}{x-y}+\dfrac{5}{2x+y}=-2\\\dfrac{4}{x-y}-\dfrac{10}{2x+y}=2\end{matrix}\right.\) 6)\(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}3x+4y=11\\2x-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\8x-4y=-44\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+4y=11\\11x=-33\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=-3\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}3x+2y=0\\2x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2y=0\\4x+2y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
3.\(\left\{{}\begin{matrix}3x+\dfrac{5}{2}y=9\\2x+\dfrac{1}{3}y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x+5y=18\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=12\\6x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 1: Giải hệ phương trình sau
\(\left\{{}\begin{matrix}\dfrac{1}{2x-y}+\left(x+3y\right)=\dfrac{3}{2}\\\dfrac{4}{2x-y}-5\left(x+3y\right)=-2\end{matrix}\right.\)
Bài 2: Cho phương trình: x\(^2\)+(m-1)x-m\(^2\)-2=0
a) CMR: phương trình luôn có 2 nghiệm phân biệt \(\forall\)m
b) Tìm m để biểu thức A=\(\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.
Bài 2:
a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)
\(=5m^2-2m+9>0\forall m\)
Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m
Bài 1:
ĐKXĐ \(2x\ne y\)
Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)
HPT trở thành
\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)
Bài tập 1 Cho hệ phương trình {mx-2y=-1
{2x+3y=1 (1)
1. Giải hệ phương trình (1) khi m = 3 .
2. Tìm m để hệ phương trình có nghiệm x =- \(\dfrac{1}{2}\) và y =\(\dfrac{2}{3}\) .
3. Tìm nghiệm của hệ phương trình (1) theo m.
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
Giải hệ phương trình \(\left\{{}\begin{matrix}x+\dfrac{2}{|y-1|}=5\\2x-\dfrac{3}{|y-1|}=0\end{matrix}\right.\)
$\begin{cases}x+\dfrac{2}{|y-1|}=5\\2x-\dfrac{3}{|y-1|}=0\end{cases}$
`<=>` $\begin{cases}3x+\dfrac{6}{|y-1|}=15\\4x-\dfrac{6}{|y-1|}=0\end{cases}$
`<=>` $\begin{cases}7x=15\\2x-\dfrac{3}{|y-1|}=0\end{cases}$
`<=>` $\begin{cases}x=\dfrac{15}{7}\\\dfrac{3}{|y-1|}=2x=\dfrac{30}{7}\end{cases}$
`<=>` $\begin{cases}x=\dfrac{15}{7}\\\dfrac{1}{|y-1|}=\dfrac{10}{7}\end{cases}$
`<=>` $\begin{cases}x=\dfrac{15}{7}\\|y-1|=\dfrac{7}{10}\end{cases}$
`<=>`$\begin{cases}x=\dfrac{15}{7}\\\left[ \begin{array}{l}y=\dfrac{17}{10}\\y=\dfrac{3}{10}\end{array} \right.\end{cases}$
`<=>` \(\left[ \begin{array}{l}\begin{cases}x=\dfrac{15}{7}\\y=\dfrac{17}{10}\end{cases}\\\begin{cases}x=\dfrac{15}{7}\\y=\dfrac{3}{10}\end{cases}\end{array} \right.\)
Vậy hệ phương trình có nghiệm `(x,y)=(15/7,17/10),(15/7,3/10)`
Giaỉ hệ phương trình sau bằng phương pháp thế
a)\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2};\dfrac{3}{x}-\dfrac{4}{y}=-1\)
b)\(\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1;\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\)
c)\(\dfrac{5x}{x+1}+\dfrac{y}{y-3}=27;\dfrac{2x}{x+1}-\dfrac{3y}{y-3}=4\)
d)\(\dfrac{7}{x+2}+\dfrac{3}{y}=2;\dfrac{4}{x+2}-\dfrac{1}{y}=\dfrac{5}{2}\)
e)\(\dfrac{2x}{x+4}+\dfrac{2y}{2y-3}=27;\dfrac{2x}{x+4}-\dfrac{6y}{2y-3}=4\)
Bạn nào biết thì giải giúp mình với ạ,mình xin cảm ơn ạ!!!
giải hệ phương trình sau
\(\dfrac{\sqrt{2x-1}}{\sqrt{y+2}}+\dfrac{\sqrt{y+2}}{\sqrt{2x-1}}=2\)
\(x+y=12\)
ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)
PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)
Từ PT ( II ) ta được : \(x=12-y\)
- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)
\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)
\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)
\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)
\(\Leftrightarrow9y^2-132y+484=0\)
\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)
- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)
Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)
Giải hệ phương trình sau:
1/ \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)\(\left(Đk:x,y\ne-1\right)\)
\(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=3\\\dfrac{2x}{x+1}+\dfrac{6y}{y+1}=-2\end{matrix}\right.\)
\(\Rightarrow\dfrac{5y}{y+1}=-5\)
\(\Leftrightarrow5y=-5y-5\)
\(\Leftrightarrow10y=-5\)
\(\Leftrightarrow y=-\dfrac{1}{2}\Rightarrow x=-2\)
<=>\(\dfrac{2x}{x+1}-\dfrac{x}{x+1}=4< =>x-4x=4< =>x=-\dfrac{4}{3}\Rightarrow y=-\dfrac{1}{4}\)