Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BBBT
Xem chi tiết
Ngô Hải Nam
8 tháng 3 2023 lúc 21:42

`8(x-3)(x+1)=8x^2 +11`

`<=>8(x^2 +x-3x-3)-8x^2 -11=0`

`<=>8x^2 +8x-24x-24-8x^2 -11=0`

`<=>-16x-35=0`

`<=>-16x=35`

`<=>x=-35/16`

 

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\left(x\ne0;x\ne2\right)\\ < =>\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\)

suy ra

`x^2 +2x-2=x-2`

`<=>x^2 +2x-x-2+2=0`

`<=>x^2 +x=0`

`<=>x(x+1)=0`

\(< =>\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ < =>x=-1\)

Duwc Minh
8 tháng 3 2023 lúc 21:42

\(a,8\left(x-3\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow\left(8x-24\right)\left(x+1\right)=8x^2+11\\ \Leftrightarrow8x^2-24x+8x-24-8x^2-11=0\\ \Leftrightarrow-16x-35=0\\ \Leftrightarrow x=\dfrac{-35}{16}\)

Vậy \(x=-\dfrac{35}{16}\)

\(b,đkxđ:x\ne2;x\ne0\)

\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}-\dfrac{1}{x}=0\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}-\dfrac{x-2}{x\left(x-2\right)}=0\\ \Leftrightarrow x^2+2x-2-x+2=0\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(t/m\right)\end{matrix}\right.\)

Vậy \(x=-1\)

@ducminh 

Linh Dayy
Xem chi tiết
Đỗ Tuệ Lâm
12 tháng 2 2022 lúc 13:40

A,

undefined

Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 13:40

a: \(\Leftrightarrow x^2-4-4x^2-4x-1-2x+3x^2=0\)

=>-6x-5=0

=>-6x=5

hay x=-5/6

b: \(\Leftrightarrow2x^3+8x^2+8x-8x^2-2x^3+16=0\)

=>8x+16=0

hay x=-2

c: \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1-x^3-3x^2-3x-1=0\)

=>9x-10=0

hay x=10/9

d: \(\Leftrightarrow10x-15-20x+28=19-2x^2-4x-2\)

\(\Leftrightarrow-10x+13+2x^2+4x-17=0\)

\(\Leftrightarrow2x^2-6x-4=0\)

\(\Leftrightarrow x^2-3x-2=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=9+8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)

Đỗ Tuệ Lâm
12 tháng 2 2022 lúc 13:43

undefined

Nguyễn Khánh Huyền
Xem chi tiết
Nguyễn Huy Tú
1 tháng 2 2022 lúc 21:13

bạn đăng tách cho mn cùng giúp nhé 

Bài 1 : 

a, \(\Leftrightarrow11-x=12-8x\Leftrightarrow7x=1\Leftrightarrow x=\dfrac{1}{7}\)

b, \(\Leftrightarrow2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

\(\Leftrightarrow2x^3+8x^2+8x-8x^2=2x^3-16\Leftrightarrow x=-2\)

c, \(\Leftrightarrow3-2x=-x-4\Leftrightarrow x=7\)

d, \(\Leftrightarrow x^3-6x^2+12x-8+9x^2-1=x^3+3x^2+3x+1\)

\(\Leftrightarrow3x^2+12x-9=3x^2+3x+1\Leftrightarrow x=\dfrac{10}{9}\)

e, \(\Leftrightarrow2x^2-x-3=2x^2+9x-5\Leftrightarrow x=5\)

f, \(\Leftrightarrow x^3-3x^2+3x-1-x^3-2x^2-x=10x-5x^2-11x-22\)

\(\Leftrightarrow-5x^2+2x-1=-5x^2-x-22\Leftrightarrow3x=-21\Leftrightarrow x=-7\)

Nguyễn Thái Thịnh
1 tháng 2 2022 lúc 22:22

h) \(PT\Leftrightarrow x^2+4x-3x-12-6x+4=x^2-8x+16\)

\(\Leftrightarrow3x=24\)

\(\Leftrightarrow x=8\)

Vậy: \(S=\left\{8\right\}\)

j) \(PT\Leftrightarrow x^3-x^2+x+x^2-x+1-2x=x^3-x\)

\(\Leftrightarrow x=1\)

Vậy: \(S=\left\{1\right\}\)

Phạm An Khánh
Xem chi tiết
Phạm An Khánh
Xem chi tiết
Kami no Kage
Xem chi tiết
Nguyển Đình Lâm 202
13 tháng 3 2016 lúc 7:51

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

Nguyễn Bảo
Xem chi tiết
Yeutoanhoc
28 tháng 2 2021 lúc 23:33

`b,2(x+1)=5x-7`

`=>2x+2=5x-7`

`=>3x=9`

`=>x=3`

Yeutoanhoc
1 tháng 3 2021 lúc 18:34

`c,3-4x(25-2x)=8x^2+x-300`

`<=>3-100x+8x^2=8x^2+x-300`

`<=>101x=303`

`<=>x=3`

Yeutoanhoc
1 tháng 3 2021 lúc 18:34

`d,(10x+3)/12=1+(6+8x)/9`

`<=>(10x+3)/12=(8x+15)/9`

`<=>30x+9=32x+60`

`<=>2x=-51`

`<=>x=-51/2`

Thanh Thu Phan
Xem chi tiết
nguyễn hoàng lê thi
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
23 tháng 3 2019 lúc 17:13

Bài 1 :

a )Thế \(m=1\) vào phương trình ta được :

\(2x^2-3x-2=0\)

\(\Leftrightarrow2x^2+x-4x-2=0\)

\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-\frac{1}{2};2\right\}\)

b ) Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)

\(=\frac{36m^2-36m+9}{4}+3m-1\)

\(=\frac{36m^2-36m+9+12m-4}{4}\)

\(=\frac{36m^2-24m+5}{4}\)

\(=\frac{36m^2-24m+4+1}{4}\)

\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)

Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)

KYAN Gaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2021 lúc 22:11

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

Nguyễn Lê Phước Thịnh
22 tháng 4 2021 lúc 22:12

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}