Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Gia Ân
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 3 2021 lúc 10:53

Do pt có 1 nghiệm là \(2-\sqrt{3}\)

\(\Rightarrow\left(2-\sqrt{3}\right)^2+a\left(2-\sqrt{3}\right)+b=0\)

\(\Leftrightarrow7-4\sqrt{3}+2a-a\sqrt{3}+b=0\)

\(\Leftrightarrow2a+b+7=\left(a+4\right)\sqrt{3}\)

Vế trái là số hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}a+4=0\\2a+b+7=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=1\end{matrix}\right.\)

Trần Hạo Thiên
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2020 lúc 13:07

Giả sử \(x_1=\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}=\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-5+2\sqrt{6}\)

Do \(x_1\) là nghiệm của pt nên:

\(a\left(-5+2\sqrt{6}\right)^2+b\left(-5+2\sqrt{6}\right)+c=0\)

\(\Leftrightarrow49a-20a\sqrt{6}-5b+2b\sqrt{6}+c=0\)

\(\Leftrightarrow49a-5b+c=\left(20a-2b\right)\sqrt{6}\)

Do vế trái là đại lượng hữu tỉ, vế phải vô tỉ nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}49a-5b+c=0\\20a-2b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=10a\\49a-50a+c=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=a\\b=10a\end{matrix}\right.\) thay vào pt ban đầu:

\(ax^2+10ax+a=0\Leftrightarrow x^2+10x+1=0\)

\(\Rightarrow x_2=\frac{1}{x_1}=-5-2\sqrt{6}\)

Đinh Thị Hải Thanh
Xem chi tiết
Thanh Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 20:35

(3):

a: =>căn 2x-3=x-3

=>x>=3 và x^2-6x+9=2x-3

=>x>=3 và x^2-8x+12=0

=>x=6

b: =>x>=-1 và 2x^2+mx-3=x^2+2x+1

=>x>=-1 và x^2+(m-2)x-4=0

=>với mọi m thì pt luôn có hai nghiệm phân biệt lớn hơn -1 vì a*c<0

Minh Anh Vũ
Xem chi tiết
Chúc Phương
16 tháng 7 2021 lúc 12:28

a) \(A=\left(1-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+2\right)\)
        \(=\left(\dfrac{2}{2}-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+\dfrac{4}{2}\right)\)
        \(=\dfrac{2-\left(\sqrt{3}-1\right)}{2}:\dfrac{\left(\sqrt{3}-1\right)+4}{2}\)
        \(=\dfrac{3-\sqrt{3}}{2}.\dfrac{2}{\sqrt{3}+3}\)
        \(=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)^2}{2}\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{3}-1\right)^2>0\\2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(\sqrt{3}-1\right)^2}{2}>0\) hay A>0
=> A có căn bậc 2
Vậy......

b)\(B=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
       \(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\sqrt{5}\right):\dfrac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
       \(=\left(\dfrac{\sqrt{2}\left(3-1\right)}{1-3}-\sqrt{5}\right).\dfrac{5-2}{\sqrt{5}+\sqrt{2}}\)
       \(=\left(-\sqrt{2}-\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-\left(\sqrt{2}+\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-3\)
Vì -3 < 0 hay B < 0 
=> B không có căn bậc 2
Vậy.....

nguyenchieubao
Xem chi tiết
Nguyễn Quỳnh Nga
14 tháng 10 2017 lúc 20:21

a) Ta có: a+b=14, ab=1 \(\Rightarrow\)pt: X^2 -14X+1       b) S= a^3+ b^3=2720 là số nguyên (ĐPCM)

b. ong bong
Xem chi tiết
Trên con đường thành côn...
9 tháng 8 2021 lúc 20:21

undefined

Julian Edward
Xem chi tiết
Hoàng Tử Hà
23 tháng 4 2021 lúc 5:15

\(y'=\dfrac{1}{2\sqrt{x-1}}+\dfrac{1}{\sqrt{2x+1}}\)

\(\Rightarrow y'\left(3\right)=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{\sqrt{7}}\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\Rightarrow a+b=\dfrac{3}{2}\)

Châu Trần
Xem chi tiết
Lầy Văn Lội
12 tháng 6 2017 lúc 23:23

hử, giả sử ta bớt đi 2 số \(2,\sqrt{2}\),thì ta sẽ viết lên 2 số mới là \(\frac{2+\sqrt{2}}{\sqrt{2}}=\sqrt{2}+1\)(*)và \(\frac{2-\sqrt{2}}{\sqrt{2}}=\sqrt{2}-1\)

(*) xuất hiện rồi nhá, lượt đầu tiên luôn