a) Cho b2 = ac.CMR: \(\dfrac{a^2+b^2}{b^2=c^2}=\dfrac{a}{c}\)
giúp mk với cần gấp
1.Cho a,b,c là các số khác 0 thỏa mãn b2=ac.CMR:\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
b^2=ac
=>b/a=c/b=k
=>b=ak; c=bk=ak*k=ak^2
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+a^2k^2}{a^2k^2+a^2k^4}=\dfrac{1}{k^2}\)
\(\dfrac{a}{c}=\dfrac{a}{ak^2}=\dfrac{1}{k^2}\)
=>\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)
Cho a, b, c đôi một khác nhau và khác 0 không thỏa mãn:
(a+b+c)2 = a2 + b2 + c2
Tính giá trị biểu thức: A = \(\dfrac{a^2}{a^2+2bc}\) + \(\dfrac{b^2}{b^2+2ca}\) + \(\dfrac{c^2}{c^2+2ab}\)
mk cần gấp mong mn giúp đỡ, cảm ơn mn rất nhiều.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Cho: \(\dfrac{a}{(b)^{2}} = \dfrac{b^{2}}{(c)^{3}} = \dfrac{c^{3}}{(a)^{4}}\)
Tính P =\((1 + \dfrac{a}{b}).(1+\dfrac{b}{c}).(1+\dfrac{c}{a})\)
Giúp mk với mk đg cần gấp
Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)
\(\Rightarrow a=k^2.k.a^4\)
\(\Rightarrow a=k^3a^4\)
\(\Rightarrow\left(ka\right)^3=1\)
\(\Rightarrow ka=1\)
\(\Rightarrow a=\dfrac{1}{k}\) (1)
Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)
\(\Rightarrow c=\dfrac{1}{k}\) (2)
Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)
\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)
(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)
TH1: \(a=b=c\)
\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Th2: \(a=c=-b\)
\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)
Giải giúp mk với cần gấp Tks CM \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left|\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right|\)
Cho a,b,c>0. Tìm Min của
\(A=\dfrac{a^2-3bc}{b+c}+\dfrac{b^2-3ca}{c+a}+\dfrac{3c^2+1}{a+b}\)
Em đang cần gấp, mọi người giúp em với. Cảm ơn!
B1. Cho a, b, c là số dương. CMR:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
B2. Cho a,b,c > 0 và a+b+c=1. cmr
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
help me!! cần gấp
Bài 1:
Theo bất đẳng thức Cauchy, ta có:
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2}{b+c}.\dfrac{b+c}{4}}=2\sqrt{\dfrac{a^2}{4}}=a\) (1)
Chứng minh tương tự:
\(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) (2)
\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\) (3)
Từ (1), (2) và (3) suy ra:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{b+c}{4}+\dfrac{c+a}{4}+\dfrac{a+b}{4}\ge a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge a+b+c\)
Bài 2:
Theo bđt Cauchy ta có:
\(1+\dfrac{1}{a}=\dfrac{a+1}{a}=\dfrac{2a+b+c}{a}\ge\dfrac{2a+2\sqrt{bc}}{a}\ge\dfrac{2\left(a+\sqrt{bc}\right)}{a}\ge\dfrac{4\sqrt{a\sqrt{bc}}}{a}\)
\(\Rightarrow1+\dfrac{1}{a}\ge4\sqrt[4]{\dfrac{bc}{a^2}}\)
Chứng minh tương tự:
\(1+\dfrac{1}{b}\ge4\sqrt[4]{\dfrac{ca}{b^2}}\)
\(1+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{ab}{c^2}}\)
Nhân vế theo vế 3 bđt trên ta được:
\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge4^3\sqrt[4]{\dfrac{\left(abc\right)^2}{a^2b^2c^2}}\)
\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\left(dpcm\right)\)
BT1: Cho a,b,c>0. CMR: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2>33\)
BT2: Cho a,b,c là các số thực. CMR:
\(a^2+b^2+c^2\ge ab+bc+ac+\dfrac{\left(a-b\right)^2}{26}+\dfrac{\left(b-c\right)^2}{6}+\dfrac{\left(c-a\right)^2}{2009}\)
Mk đang cần gấp. Giúp mk với!!!
BT2: Nhân 2 lên, chuyển vế, biến đổi bla..... sẽ ra đpcm
Cho các số thực a,b,c thỏa mãn a+b+c=0,a2+b2\(\ne\)c2,b2+c2\(\ne\)a2,c2+a2\(\ne\)b2.Tính giá trị biểu thức P=\(\dfrac{a^2}{a^2-b^2-c^2}\)+\(\dfrac{b^2}{b^2-c^2-a^2}\)+\(\dfrac{c^2}{c^2-a^2-b^2}\)
\(\)Ta có: \(a+b+c=0 \Rightarrow b+c=-a \Rightarrow (b+c)^2=(-a)^2 \Leftrightarrow b^2+c^2+2bc=a^2 \Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca;c^2-a^2-b^2=2ab\)
\(P=...=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2bc}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\)
----
Bổ đề \(a+b+c=0 \Leftrightarrow a^3+b^3+c^3\)
Ở đây ta c/m chiều thuận:
Với \(a+b+c=0 \Leftrightarrow a+b=-c \Rightarrow (a+b)^3=(-c)^3 \Leftrightarrow a^3+b^3+3ab(a+b)=-c^3 \Leftrightarrow a^3+b^3+c^3=3abc(QED)\)
cho\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\).Chứng minh rằng \(\dfrac{ab}{cd}\)= \(\dfrac{a^2-b^2}{c^2-d^2}\).Mình đang cần gấp ạ, mong mọi người giúp mình!