Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Châu Ngọc Minh Anh
Xem chi tiết
Hoàng Tử Hà
11 tháng 12 2020 lúc 19:02

Thấy cosx= 0 là nghiệm của phương trình => \(x=\dfrac{\pi}{2}+k\pi\)

Xét cosx khác 0, chia cả 2 vế cho cos^2 x

\(\Leftrightarrow\tan^2x-\sqrt{3}\tan x+2=1+\tan^2x\)

\(\Leftrightarrow\tan x=\dfrac{\sqrt{3}}{3}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Hung nguyen
27 tháng 7 2021 lúc 14:54

\(\sqrt{3}sin2x-cos2x=\sqrt{2}\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow cos\left(\dfrac{\pi}{6}\right)sin2x-sin\left(\dfrac{\pi}{6}\right)cos2x=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=sin\left(\dfrac{\pi}{4}\right)\)

Làm nốt

Hồng Phúc
20 tháng 8 2021 lúc 22:42

\(\sqrt{2}sinx+sin2x=\sqrt{3}cos2x-\sqrt{6}cosx\)

\(\Leftrightarrow\dfrac{\sqrt{2}}{2}sinx+\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x+\dfrac{\sqrt{6}}{2}cosx=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{3}\right)+sin\left(2x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{6}\right)+2sin\left(x-\dfrac{\pi}{6}\right).cos\left(x-\dfrac{\pi}{6}\right)=0\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{6}\right)\left[1+\sqrt{2}sin\left(x-\dfrac{\pi}{6}\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x-\dfrac{\pi}{6}\right)=0\\sin\left(x-\dfrac{\pi}{6}\right)=-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

Đến đấy thì dễ rồi.

Nguyễn Việt Lâm
20 tháng 8 2021 lúc 22:45

\(\Leftrightarrow\sqrt{2}\left(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=0\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{3}\right)+sin\left(2x-\dfrac{\pi}{3}\right)=0\)

Đặt \(x+\dfrac{\pi}{3}=u\Rightarrow2x-\dfrac{\pi}{3}=2u-\pi\)

\(\Rightarrow\sqrt{2}sinu+sin\left(2u-\pi\right)=0\)

\(\Leftrightarrow\sqrt{2}sinu-sin2u=0\)

\(\Leftrightarrow sinu\left(\sqrt{2}-2cosu\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinu=0\\cosu=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{3}\right)=0\\cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Trọng Vinh
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:48

a/

\(\Leftrightarrow2sinx.cosx-2\sqrt{3}cos^2x-4cosx=0\)

\(\Leftrightarrow2cosx\left(sinx-\sqrt{3}cosx-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Rightarrow x=\frac{\pi}{2}+k\pi\\sinx-\sqrt{3}cosx=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{5\pi}{6}+k2\pi\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:51

b/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx\right)=sinx-\sqrt{3}cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\sqrt{3}cosx\left(1\right)\\sinx+\sqrt{3}cosx=1\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

\(\left(2\right)\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x+\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
31 tháng 7 2020 lúc 22:54

c/

\(\Leftrightarrow sin6x\left(cos3x-1-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin6x=0\Rightarrow x=\frac{k\pi}{6}\\cos3x-sin3x=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow sin3x-cos3x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\3x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{3}\\x=\frac{\pi}{2}+\frac{k2\pi}{3}\end{matrix}\right.\)

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
31 tháng 1 2021 lúc 16:15

ĐKXĐ: \(sinx\ne\dfrac{\sqrt{2}}{2}\)

\(\left(sinx-cosx\right)\left(sin2x-3\right)+\left(sinx-cosx\right)^2+\left(sin^2x-cos^2x\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sin2x-3\right)+\left(sinx-cosx\right)^2+\left(sinx-cosx\right)\left(sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sin2x-3+2sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\\left(sin2x-1\right)+2\left(sinx+1\right)=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)

Kết hợp ĐKXĐ \(\Rightarrow x=-\dfrac{\pi}{4}+k2\pi\)

oooloo
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 8 2020 lúc 22:43

\(\Leftrightarrow-cos2x+\sqrt{3}sin2x=\sqrt{3}-1\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{\sqrt{3}-1}{2}\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{\sqrt{3}-1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{6}=arcsin\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\\2x-\frac{\pi}{6}=\pi-arcsin\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{1}{2}arcsin\left(\frac{\sqrt{3}-1}{6}\right)+k\pi\\x=\frac{7\pi}{12}-\frac{1}{2}arcsin\left(\frac{\sqrt{3}-1}{6}\right)+k\pi\end{matrix}\right.\)

thắng
Xem chi tiết
Ngô Thành Chung
4 tháng 10 2021 lúc 21:31

Đặt tanx = t

sin2x = 2sinx.cosx

= 2. tanx . cos2x

\(2tanx.\dfrac{1}{tan^2x+1}\)

\(\dfrac{2t}{t^2+1}\)

Vậy ta có phương trình

\(\dfrac{2t}{t^2+1}+4t=\dfrac{9\sqrt{3}}{2}\)