Cho A=\(\dfrac{10^{11}-1}{10^{12}-1}\) ; B=\(\dfrac{10^{10}+1}{10^{11}+1}\)
Hãy so sánh A và B!
(Tiện thể có ai chơi game thú cưng mạo hiểm ko. Mình rất thích game đó!)
Cho \(A=\dfrac{10^{11}-1}{10^{12}-1}\); \(B=\dfrac{10^{10}+1}{10^{11}+1}\) So sánh \(A\) và \(B\)
Lời giải:
$B=\frac{10^{11}+10}{10^{12}+10}$
Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:
$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$
$\Rightarrow A< B$
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
2, cho a =\(\dfrac{10^{11}-1}{10^{12}-1}\); b=\(\dfrac{10^{10}+1}{10^{11}+1}\). so sánh a và b
Ta có :\(a=\dfrac{10^{11}-1}{10^{12}-1}\Rightarrow10a=\dfrac{10^{12}-10}{10^{12}-1}=\dfrac{10^{12}-1-9}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
\(b=\dfrac{10^{10}+1}{10^{11}+1}\Rightarrow10b=\dfrac{10^{11}+10}{10^{11}+1}=\dfrac{10^{11}+1+9}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
Ta có : \(1-\dfrac{9}{10^{12}-1}\le1+\dfrac{9}{10^{11}+1}\) hay \(10a< 10b\Rightarrow a< b\)
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(A< \dfrac{10^{11}-1+11}{10^{12}-1+11}\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}=B\)
\(\Rightarrow A< B\)
Cho A = \(\dfrac{10^{11}-1}{10^{12}-1}\) ; B = \(\dfrac{10^{10}+1}{10^{11}+1}\) . So sánh A và B .
ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}\\ 10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\\ =>10A< 1\\ B=\dfrac{10^{10}+1}{10^{11}+1}\\ 10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\\ =>10B>1\)
=> 10A<10B =>A<B
vậy A bé hơn B
Cho A=\(\dfrac{10^{11}-1}{10^{12}-1}\)và B=\(\dfrac{10^{10}+1}{10^{11}+1}\).Hãy so sánh A và B
Ta có: \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}\)
\(\Rightarrow A< \dfrac{10^{11}+10}{10^{12}+10}\)
\(\Rightarrow A< \dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}\)
\(\Rightarrow A< \dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow A< B\)
Vậy \(A< B\).
Cách 2:
Ta có: \(10A=\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\Rightarrow1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\)
\(\Rightarrow10A< 10B\Rightarrow A< B\)
Vậy A < B
So sánh:
A) \(\dfrac{n+1}{n+2}\) và \(\dfrac{n}{n+3}\)
B) A= \(\dfrac{10^{11}-1}{10^{12}-1}\) và B= \(\dfrac{10^{10}+1}{10^{11}+1}\)
Mọi người giúp mình với mình đang cần gấp!
Lời giải:
a.
\(\frac{n+1}{n+2}=\frac{n+1}{n+2}+1-1=\frac{2n+3}{n+2}-1\)
\(> \frac{2n+3}{n+3}-1=\frac{(n+3)+n}{n+3}-1=\frac{n}{n+3}\)
b.
\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{(10^{12}-1)-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{(10^{11}+1)+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)
$\Rightarrow 10A< 10B\Rightarrow A< B$
So Sánh : \(\dfrac{10^{11}-1}{10^{12}-1}\)và\(\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Vì \(10^{11}-1< 10^{12}-1\)
\(\Rightarrow\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10^{10}+1}{10^{11}+1}\)
Cho \(a,b,m\in N\)*. So sánh :
a) \(\dfrac{a+m}{b+m}\) với \(\dfrac{a}{b}\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) với \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
So sánh A = \(\dfrac{10^{11}-1}{10^{12}-1}\) và B =\(\dfrac{10^{10}+1}{10^{11}+1}\)
ta có: \(A=\dfrac{10.10^{10}-1}{10.10^{11}-1}=\dfrac{10^{10}-1}{10^{11}-1}\)
so sánh: \(A=\dfrac{10^{10}-1}{10^{11}-1}\)và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow A< B\)
10A=\(\dfrac{10^{12}-10}{10^{12}-1}=1-\dfrac{9}{10^{12}-1}\)
10B =\(\dfrac{10^{11}+10}{10^{11}+1}=1+\dfrac{9}{10^{11}+1}\)
\(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{12}+1}\) =>\(1-\dfrac{9}{10^{12}-1}< 1+\dfrac{9}{10^{11}+1}\)
=> 10A < 10B
=> A<B
Vậy A < B
\(A=\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(A=\dfrac{10.10^{10}-1}{10.10^{11}-1}\)và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Vậy A<B
So Sánh:
A=\(\dfrac{10^{11}-1}{10^{12}-1}\) và B=\(\dfrac{10^{10}+1}{10^{11}+1}\)
C=\(\dfrac{2005^{2005}+1}{2005^{2006}+1}\) và D=\(\dfrac{2005^{2004}+1}{2005^{2005}+1}\)