Tìm x,y,z biết:
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
và x.y.z=12
HELP ME!
Tìm x,y,z biết:
a) 3x=2y, 7y=5z và x-y+z=32
b) \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) và x.y=24
c)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
d)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\) và x.y.z=810
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}\)và 2x+y-z=81
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}\)và 5x-y+3z=124
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)và x.y.z=810
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\)và\(x^2.y^2.z^2=288^2\)
a.
Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)
Thế vào \(2x+y-z=81\)
\(\Rightarrow2.5k+3k-4k=81\)
\(\Rightarrow9k=81\)
\(\Rightarrow k=9\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)
b.
Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)
Thế vào \(5x-y+3z=124\)
\(\Rightarrow5.3k-5k+3.2k=124\)
\(\Rightarrow16k=124\)
\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)
c.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Thế vào \(xyz=810\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow k^3=27\)
\(\Rightarrow k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)
d.
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=6k\end{matrix}\right.\)
Thế vào \(x^2y^2z^2=288^2\)
\(\Rightarrow\left(2k\right)^2.\left(3k\right)^2.\left(6k\right)^2=288^2\)
\(\Rightarrow\left(k^2\right)^3=64\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k=4\\y=3k=6\\z=6k=12\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=2k=-4\\y=3k=-6\\z=6k=-12\end{matrix}\right.\)
Tìm x,y,z biết: \(\dfrac{4}{x+1} =\dfrac{2}{y-2}=\dfrac{3}{z+2} \) và \(xyz=12\)
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-7=0
=>
\(\dfrac{4}{x+1}=\dfrac{2}{y-2}=\dfrac{3}{z+2}\)
=>\(\dfrac{x+1}{4}=\dfrac{y-2}{2}=\dfrac{z+2}{3}=k\)
=>x+1=4k; y-2=2k; z+2=3k
=>x=4k-1; y=2k+2; z=3k-2
xyz=12
=>(4k-1)(2k+2)(3k-2)=12
=>(4k-1)(k+1)(3k-2)=6
=>(4k-1)(3k^2-2k+3k-2)=6
=>(3k^2+k-2)(4k-1)=6
=>12k^3-3k^2+4k^2-k-8k+2-6=0
=>12k^3+k^2-9k-4=0
=>k=1
=>x=4k-1=3; y=2k+2=4; z=3k-2=3-2=1
Tìm GTNN của biểu thức:
\(A=\dfrac{x^2}{x+y}+\dfrac{y^2}{y+z}+\dfrac{z^2}{x+z}\)
Biết\(\left\{{}\begin{matrix}x.y.z>0\\\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\end{matrix}\right.\)
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
Tìm x,y,z trong dãy tỉ số bằng nhau
1)\(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\)và \(2x^2+2y^2.z^2=1\)
2) \(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)
3) \(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\)và x6 . y6 =14
4) \(\dfrac{x+4}{6}=\dfrac{3y-1}{8}=\dfrac{3y-x-5}{x}\)
5) \(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\)và x.y.z=192
6)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{x.y}{200}\)
7)\(\dfrac{x+1}{2}=\dfrac{y-1}{3}=\dfrac{z+2}{4}=\dfrac{x+y+z+2}{2x+5}\)
8) \(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)và x.y = 1200
9)\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và x.y.z = 22400
10)15x = -10y =6z và x.y.z = -30000
11) Cho\(\dfrac{x+1}{3}=\dfrac{y-2}{5}=\dfrac{2z+14}{9}\)và x+z=y
12) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{6}\).Tính M=\(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Tìm 3 số x, y, z biết \(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}\) và x.y.z = 22400
Đặt \(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}=k\Leftrightarrow x=40k;y=20k;z=28k\)
\(xyz=22400\\ \Leftrightarrow22400k^3=22400\\ \Leftrightarrow k^3=1\Leftrightarrow k=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)
\(\dfrac{x}{40}=\dfrac{y}{20}=\dfrac{z}{28}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=40k\\y=20k\\z=28k\end{matrix}\right.\)\(\Rightarrow xyz=22400k^3=22400\Rightarrow k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=40\\y=20\\z=28\end{matrix}\right.\)
tìm x,y,z:
\(\dfrac{4}{x+1}=\dfrac{z}{y-2}=\dfrac{3}{z+2}\) và xyz=12
Phân thức số 2 có thật sự là $\frac{z}{y-2}$ không bạn? Bạn xem lại đề.
tìm x,y và z biết
1) \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}\) và x + y + z = 18
help me!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có: \(x+y+z=18\)
\(\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}\)
\(\Rightarrow\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}and=\dfrac{\left(y+z\right)+\left(2+3\right)}{5}+\dfrac{\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5+\left(y+z\right)}{5}+\dfrac{1+x}{3}\)
\(and\dfrac{5}{5}=1\)
\(\Rightarrow x=1-\dfrac{1}{3}=\dfrac{2}{3}\) vậy \(x=2\)
Ps: tự làm tiếp nha mình mới làm tới đó
Làm tiếp :
Vì \(x=2\Rightarrow\left(y+z\right)=18-2=16\)
\(\Rightarrow\dfrac{y+2}{4}=\dfrac{z+3}{5}and=\dfrac{2}{4}+\dfrac{3}{5}+\dfrac{y}{4}+\dfrac{z}{5}\)
Vậy \(y=1-\dfrac{2}{4}=\dfrac{2}{4}=2+4=6\)
\(z=16-\left(6+2\right)=8\)
\(\left[{}\begin{matrix}x=2\\y=6\\z=8\end{matrix}\right.\)
Lâu lâu nhai lại dạng này cũng thấy ngon, dù không thích
Xong rồi! Dù sai hay đúng gì thì mình cũng góp công chút nhé! Nhưng ti lệ đúng là 85% thực chất là 95% nhưng (không dám nói hơn, sợ mất mặt)
Tìm x,y,z biết:
a) \(\dfrac{x}{5}=\dfrac{y}{2}\) và \(x-y=9\)
b) \(\dfrac{x-3}{12}=\dfrac{-3}{3-x}\)
c) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và \(x-y-z=-49\)
a: Áp dụng tính chất của DTSBN, ta được:
x/5=y/2=(x-y)/(5-2)=9/3=3
=>x=15; y=6
b: =>(x-3)/12=3/(x-3)
=>(x-3)^2=36
=>(x-9)(x+3)=0
=>x=9 hoặc x=-3
c; x/2=y/3
=>x/10=y/15
y/5=z/4
=>y/15=z/12
=>x/10=y/15=z/12=(x-y-z)/(10-15-12)=-49/-17=49/17
=>x=490/17; y=735/17; z=588/17
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: