( 4x- 8 )10
(4x-5)8=(5-4x)10
\(\Leftrightarrow\left(4x-5\right)^{10}-\left(4x-5\right)^8=0\)
\(\Leftrightarrow\left(4x-5\right)^8\cdot\left(4x-6\right)\left(4x-4\right)=0\)
hay \(x\in\left\{\dfrac{5}{4};\dfrac{3}{2};1\right\}\)
Viết các biểu thức sau về hằng đẳng thức:
a, 9x^4-12x^5+4x^6
b, x^10-4x^8+4x^6
c, 9x^6-12x^7+4x^8
a, \(9x^4-12x^5+4x^6=x^4\left(9-12x+4x^2\right)=x^4\left(3-2x\right)^2\)
b, \(x^{10}-4x^8+4x^6=x^6\left(x^4-4x^2+4\right)=x^6\left(x^2-2\right)^2\)
c, \(9x^6-12x^7+4x^8=x^6\left(9-12x+4x^2\right)=x^6\left(3-2x\right)^2\)
________________________________________________________________---------------------------------------------------------------------Tích cho mk nha-----------------------------------------------------------------------------______________________________________________
Biết 4x = 5y và 2x + 3y = -44 thì x và y có giá trị là:
A.
x = -10; y = 8
B.
x = -5; y = -4
C.
x = 10; y = -8
D.
x = -10; y = -8
3x-8.(-6)=4x+10
3x-8.(-6)=4x+10
=> 3x - (-48 ) = 4x+10
=> 3x + 48 = 4x + 10
=> 48 - 10 = 4x - 3x
=> 38 = x
Vậy x = 38
\(3x-8.\left(-6\right)=4x+10\)
\(3x+48=4x+10\)
\(4x-3x=48-10\)
\(x=38\)
3x-8.(-6)=4x+10
=>3x+48=4x+10
=>-10+48=4x-3x
=>x=38
Tìm x:
a) (x-8)(x3+8)=0
b) (4x-3)-(x+5) =3(10-x)
a) `(x-8)(x^3+8)=0`
`<=>(x-8)(x+2)(x^2-2x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=8\\x=-2\end{array} \right.\) (Vì `x^2-2x+4 \ne 0 forall x)`
Vậy `A={8;-2}`.
b) `(4x-3)-(x+5)=3(10-x)`
`,=>4x-3-x-5=30-3x`
`<=>3x-8=30-3x`
`<=>6x=38`
`<=>x=19/3`
Vậy `S={19/3}`.
Tìm x biết:
a) (x-8)(x3+8)=0
b) (4x-3)-(x+5)=3(10-x)
\(a,\left(x-8\right)\left(x^3+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
\(b,\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\\ \Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow3x-8-30+3x=0\\ \Leftrightarrow6x-38=0\\ \Leftrightarrow x=\dfrac{19}{3}\)
TK
`a.(x-8)(x+8)=0`
`⇔³{x−8=0x³+8=2 `
`⇔³³{x=8x³=−2³ `
`⇔{x=8x=−2`
Vậy ` x = 8;-2`
`b. ( 4 x − 3 ) − ( x + 5 ) = 3 . ( 10 − x )`
`⇔ 4 x − 3 − x − 5 = 30 − 3 x`
`⇔ 3 x − 8 = 30 − 3 x`
`⇔ 3 x + 3 x = 30 + 8`
`⇔ 6 x = 38`
`⇔ x = 19/ 3`
Vậy ` x = 19/ 3`
\(a.\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\\left(x+2\right)\left(x^2-2x+4\right)=0\end{matrix}\right.\)
Ta có: \(x^2-2x+4=x^2-2x+1+3=\left(x-1\right)^2+3\ge3>0\)
\(\Rightarrow x=-2\)
Vậy \(S=\left\{-2;8\right\}\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Vậy \(S=\left\{\dfrac{19}{3}\right\}\)
\(\underrightarrow{lim}4\) \(\frac{4\sqrt{2x+8}-3\sqrt[3]{4x-8}-10}{x^3-4x^2-16x+64}\)
Tìm GTLN
\(A=-x^2+2x+10\)
\(B=4x-2x^2+8\)
\(C=-x^2-x+1\)
D= \(-4x^2+6x+3\)
`A=-x^2+2x+10`
`=-(x^2-2x)+10`
`=-(x-1)^2+11<=11`
Dấu "=" xảy ra khi `x=1`.
`B=4x-2x^2+8`
`=-2(x^2-2x)+8`
`=-2(x^2-2x+1)+10`
`=-2(x-1)^2+10<=10`
Dấu "=" xảy ra khi `x=1`
`C=-x^2-x+1`
`=-(x^2+x)+1`
`=-(x^2+x+1/4)+1+1/4`
`=-(x+1/2)^2+5/4<=5/4`
Dấu "=" xảy ra khi `x=-1/2`
`D=-4x^2+6x+3`
`=-(4x^2-6x)+3`
`=-(4x^2-6x+9/4)+21/4`
`=-(2x-3/2)^2+21/4<=21/4`
Dấu "=' xảy ra khi `2x=3/2<=>x=3/4`
\(a,A=-x^2+2x+10=-x^2+2x-1+11=-\left(x^2-2x+1\right)+11\)
\(=11-\left(x-1\right)^2\)
- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=11-\left(x-1\right)^2\le11\)
Vậy MaxA = 11 <=> x = 1 .
\(b,B=-2x^2+4x-2+10=-2\left(x^2-2x+1\right)+10=10-2\left(x-1\right)^2\)
- Thấy : \(\left(x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow B=10-2\left(x-1\right)^2\le10\)
Vậy MaxB = 10 <=> x = 1 .
\(c,C=-x^2-\dfrac{1}{2}.2.x-\dfrac{1}{4}+\dfrac{5}{4}=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\)
- Thấy : \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow C=\dfrac{5}{4}-\left(x+\dfrac{1}{2}\right)^2\le\dfrac{5}{4}\)
Vậy MaxC = 5/4 <=> x = -1/2 .
\(d,D=-4x^2+6x+3=-4x^2+2x.2.\dfrac{6}{4}-\dfrac{9}{4}+\dfrac{21}{4}=-\left(4x^2-6x+\dfrac{9}{4}\right)+\dfrac{21}{4}\)
\(=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\)
- Thấy : \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\in R\)
\(\Rightarrow A=\dfrac{21}{4}-\left(2x-\dfrac{3}{2}\right)^2\le\dfrac{21}{4}\)
Vậy MaxD=21/4 <=> x = 3/4 .
\(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
\(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{-2\left(x-2\right)}{x+2}=-\dfrac{5}{2}\)