So sánh
\(\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2015}}\)
Với 1/4
cho A=\(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\)
So sánh A với\(\dfrac{1}{4}\)
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2015}}\)
\(\Rightarrow5A=1+\dfrac{1}{5}+...+\dfrac{1}{5^{2014}}\)
\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+...+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2015}}\right)\)
\(\Rightarrow4A=1-\dfrac{1}{5^{2015}}\)
\(\Rightarrow A=\dfrac{1}{4}-\dfrac{1}{5^{2015}.4}< \dfrac{1}{4}\)
\(\Rightarrowđpcm\)
\(A=\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\)
\(\Rightarrow5A=5\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\)
\(\Rightarrow5A=1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\)
\(\Rightarrow5A-A=\left(1+\dfrac{1}{5}+\dfrac{1}{5^2}+...+\dfrac{1}{5^{2013}}+\dfrac{1}{5^{2014}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+...+\dfrac{1}{5^{2014}}+\dfrac{1}{5^{2015}}\right)\)
\(\Rightarrow4A=1-\dfrac{1}{5^{2015}}\)
\(\Rightarrow A=\dfrac{1}{4}-\dfrac{1}{5^{2015}.4}\)
\(\Rightarrow A< \dfrac{1}{4}\)
Cho \(A=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026}\)và \(B=1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}\)So sánh với \(1\dfrac{2013}{2014}\)
Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`
Câu 5 : A= \(\dfrac{1}{2}\) +\(\dfrac{1}{2^2}\)+ \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)+ ....+\(\dfrac{1}{2^{2021}}\)+\(\dfrac{1}{2^{2022}}\)và B= \(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+\(\dfrac{1}{5}\)+\(\dfrac{17}{60}\)
a) Rút gọn A
b) So sánh A và B
a) \(A=2A-A\)
\(=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2021}}-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2022}}\right)\)
\(=1-\dfrac{1}{2^{2022}}\)
b) \(B=\dfrac{20+15+12+17}{60}=\dfrac{4}{5}=1-\dfrac{1}{5}\)
\(A>B\left(Vì\left(\dfrac{1}{2^{2022}}< \dfrac{1}{5}\right)\right)\)
a) A = 2 A − A = 2 ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 + 1 2 + . . . + 1 2 2021 − ( 1 2 + 1 2 2 + . . . + 1 2 2022 ) = 1 − 1 2 2022 b) B = 20 + 15 + 12 + 17 60 = 4 5 = 1 − 1 5 A > B ( V ì ( 1 2 2022 < 1 5 ) )
Cho A= 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4034}\); B = 1 + \(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4033}\)
So sánh \(\dfrac{A}{B}\)với 1\(\dfrac{2017}{2018}\)
so sánh các hỗn số sau:
\(7\dfrac{4}{5}\) và \(9\dfrac{1}{2}\)
\(7\dfrac{1}{6}\) và \(3\dfrac{4}{5}\)
\(9\dfrac{9}{1}\) và \(5\dfrac{8}{6}\)
\(7\dfrac{4}{5}và9\dfrac{1}{2}\\ Tacó:7< 9\\ \Rightarrow7\dfrac{4}{5}< 9\dfrac{1}{2}\\ 7\dfrac{1}{6}và3\dfrac{4}{5}\\ Tacó:7>3\\ \Rightarrow7\dfrac{1}{6}>3\dfrac{4}{5}\)
Câu cuối không phải hỗn số
1 so sánh \(\dfrac{1}{2^{300}}\) và \(\dfrac{1}{300^{200}}\)
\(\dfrac{1}{5^{199}}\) và\(\dfrac{1}{3^{300}}\)
2 so sánh
5\(^{20}\)và 3\(^{34}\)
(-5)\(^{39}\)và -2\(^{91}\)
Bài 1:
a: Sửa đề: 1/3^200
1/2^300=(1/8)^100
1/3^200=(1/9)^100
mà 1/8>1/9
nên 1/2^300>1/3^200
b: 1/5^199>1/5^200=1/25^100
1/3^300=1/27^100
mà 25^100<27^100
nên 1/5^199>1/3^300
Cho M=\(\dfrac{1}{5}\)+\(\dfrac{2}{5^2}\)+\(\dfrac{3}{5^3}\)+...+\(\dfrac{2014}{5^{2014}}\). So sánh M với \(\dfrac{5}{36}\)
Lời giải:
$M=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}$
$5M=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}$
$\Rightarrow 4M=5M-M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}$
$4M+\frac{2014}{5^{2014}}=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}$
$5(4M+\frac{2014}{5^{2014}})=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}$
$\Rightarrow 4(4M+\frac{2014}{5^{2014}})=5-\frac{1}{5^{2013}}$
$M=\frac{5}{16}-\frac{1}{16.5^{2013}-\frac{2014}{4.5^{2014}}$
so sánh với 1 :
\(\dfrac{1}{4444};\dfrac{3}{7};\dfrac{9}{5};\dfrac{7}{3};\dfrac{14}{15};\dfrac{16}{16};\dfrac{14}{11}\)
↑ \(\dfrac{1}{4}\) :>
\(\dfrac{1}{4444}< 1,\dfrac{3}{7}< 1,\dfrac{9}{5}>1,\dfrac{7}{3}>1,\dfrac{14}{15}< 1,\dfrac{16}{16}=1,\dfrac{14}{11}>1\)
1/4 < 1
3/7 < 1
9/5 > 1
7/3 > 1
14/15 < 1
16/16 = 1
14/11 >1
P=\(\left(\dfrac{1}{5}+\dfrac{1}{21}-\dfrac{1}{2015}\right):\left(\dfrac{1}{21}+\dfrac{1}{5}-\dfrac{1}{2015}+\dfrac{1}{5}.\dfrac{2}{21}.\dfrac{3}{2015}\right)+6:\left(26.2015-99\right)\)