Cho A = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026},B=1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}\)
So sánh \(\dfrac{A}{B}\) với \(1\dfrac{2013}{2014}\)
Tính:
a/\(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{3+\dfrac{3}{2}+\dfrac{3}{3}+\dfrac{3}{4}}{2-\dfrac{2}{2}+\dfrac{2}{3}-\dfrac{2}{4}}\)
b/\(\dfrac{1+\dfrac{1}{4}+\dfrac{1}{1+\dfrac{1}{4}}}{1-\dfrac{1}{4}-\dfrac{1}{1-\dfrac{1}{4}}}\)
c/\(\dfrac{\dfrac{2}{5}-\dfrac{7}{5}}{\dfrac{2}{5}-\dfrac{\dfrac{3}{4}}{\dfrac{3}{4}.\dfrac{3}{7}-1}}-\dfrac{1}{\dfrac{3}{7}\left(\dfrac{3}{4}.\dfrac{3}{7}.\dfrac{2}{5}-\dfrac{2}{5}-\dfrac{3}{4}\right)}\)
d/\(\left(\dfrac{\dfrac{4}{3}}{2+\dfrac{4}{3}}+\dfrac{2-\dfrac{4}{3}}{\dfrac{4}{3}}\right).\left(\dfrac{\dfrac{2}{3}}{4+\dfrac{2}{3}}-\dfrac{4-\dfrac{2}{3}}{\dfrac{2}{3}}\right)\)
Giúp mik với các bạn ơi 1 bài thôi cug đc.
Bài 1: Cho A= \(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{17}-\dfrac{1}{31}+\dfrac{1}{65}-\dfrac{1}{127}\)
So sánh A với \(\dfrac{1}{6}\)
Bài 2: Cho A = \(\dfrac{326}{1955}+\dfrac{988}{1975}+\dfrac{662}{1985}\) và B = \(\dfrac{3951}{3950}+\dfrac{1}{5955}+\dfrac{1}{11730}\)
So sánh A với B
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
1/* Chứng minh rằng:
\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)
2/* Cho:
A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)
Các bn giúp mk những bài này nha!
1/ Tính
\(\dfrac{\left(1+2+3+...+100\right).\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)
2/ Tìm x:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
3/ Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh: \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
4/ Tìm \(a,b\varepsilon Q:a+b=a.b=a:b\)
Giúp mik nha mai mik cần rồi.
Thực hiện phép tính:
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}\)
b) \(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{3}{7}.33\dfrac{1}{3}\)
c) \(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(-\dfrac{5}{7}\right)\)
d) \(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)\)
Thực hiện phép tính (tính nhanh nếu có thể):
a) \(\left(\dfrac{1}{2}-\dfrac{1}{3}\right)-\left(\dfrac{5}{3}-\dfrac{3}{2}\right)+\left(\dfrac{7}{3}-\dfrac{5}{2}\right)\)
b) \(\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}\)
1. Tính:
a. \(\dfrac{-1}{4}+\dfrac{5}{6}\) b. \(\dfrac{5}{12}+\dfrac{-7}{8}\) c. \(\dfrac{-7}{6}+\dfrac{-3}{10}\) d. \(\dfrac{-3}{7}+\dfrac{5}{6}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}\) b. \(\dfrac{-13}{12}-\dfrac{5}{18}\) c. \(\dfrac{-2}{5}-\dfrac{-3}{11}\) d. \(0,6--1\dfrac{2}{3}\)
3. Tính :
a. \(\dfrac{-1}{39}+\dfrac{-1}{52}\) b. \(\dfrac{-6}{9}-\dfrac{12}{16}\) c. \(\dfrac{-3}{7}-\dfrac{-2}{11}\) d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
a) \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}\)\(-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)
b)\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
c) \(\dfrac{1}{1.3}+\dfrac{1}{3.5}+.....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}+......+\dfrac{1}{255.257}\)