Cho A= 1 + \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4034}\); B = 1 + \(\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4033}\)
So sánh \(\dfrac{A}{B}\)với 1\(\dfrac{2017}{2018}\)
Cho A = \(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026},B=1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}\)
So sánh \(\dfrac{A}{B}\) với \(1\dfrac{2013}{2014}\)
Tìm x :
a)\(\dfrac{49}{81}\)=\(\dfrac{7^x}{9}\) b)\(\dfrac{-64}{343}\)=(\(\dfrac{-4^x}{7}\))
c)\(\dfrac{9}{144}\)=\(\dfrac{3^x}{12}\) d)\(\dfrac{-1}{32}\)=(\(\dfrac{-1^x}{2}\))
Giúp với ạ bài khó quá . Em cảm ơn ạ !
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
1/* Chứng minh rằng:
\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+...\dfrac{1}{49\times50}=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+..+\dfrac{1}{50}\)
2/* Cho:
A=\(\dfrac{1}{1\times2}+\dfrac{1}{3\times4}+\dfrac{1}{5\times6}+.....+\dfrac{1}{99\times100}\). Chứng minh rằng:\(\dfrac{7}{12}< A>\dfrac{5}{6}\)
Các bn giúp mk những bài này nha!
So sánh A và B với \(\dfrac{1}{2}\) biết :
\(A=\dfrac{1}{1.2^2}+\dfrac{1}{2.3^2}+\dfrac{1}{3.4^2}+........+\dfrac{1}{49.50^2}\) và
\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{50^2}\)
1. Tính:
a. \(\dfrac{-1}{4}+\dfrac{5}{6}\) b. \(\dfrac{5}{12}+\dfrac{-7}{8}\) c. \(\dfrac{-7}{6}+\dfrac{-3}{10}\) d. \(\dfrac{-3}{7}+\dfrac{5}{6}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}\) b. \(\dfrac{-13}{12}-\dfrac{5}{18}\) c. \(\dfrac{-2}{5}-\dfrac{-3}{11}\) d. \(0,6--1\dfrac{2}{3}\)
3. Tính :
a. \(\dfrac{-1}{39}+\dfrac{-1}{52}\) b. \(\dfrac{-6}{9}-\dfrac{12}{16}\) c. \(\dfrac{-3}{7}-\dfrac{-2}{11}\) d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
Bài 1:
1/\(\left(-\dfrac{25}{13}\right)+\left(-\dfrac{19}{17}\right)+\dfrac{12}{13}+\left(-\dfrac{25}{17}\right)\) 6/ \(2\dfrac{2}{15}.\dfrac{9}{17}.\dfrac{3}{32}:\left(-\dfrac{3}{17}\right)\)
2/\(\dfrac{1}{2}-\left(-\dfrac{1}{3}\right)+\dfrac{1}{23}+\dfrac{1}{6}\) 7/\(\left(\dfrac{-3}{4}+\dfrac{2}{5}\right):\dfrac{3}{7}+\left(\dfrac{3}{5}+\dfrac{-1}{4}\right):\dfrac{3}{7}\)
3/\(\left(-\dfrac{3}{7}\right).\dfrac{5}{11}+\left(-\dfrac{5}{14}\right).\dfrac{5}{11}\) 8/\(\left(-\dfrac{1}{3}\right).\left(-\dfrac{15}{19}\right).\dfrac{38}{45}\)
4/\(\left(-\dfrac{5}{11}\right).\dfrac{7}{15}.\dfrac{11}{-5}.\left(-30\right)\) 9/\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+......+\dfrac{1}{19.20}\)
5/\(\left(-\dfrac{5}{9}\right).\dfrac{3}{11}+\left(-\dfrac{13}{18}\right).\dfrac{3}{11}\) 10/\(\dfrac{1}{9.10}-\dfrac{1}{8.9}-\dfrac{1}{7.8}-......-\dfrac{1}{2.3}-\dfrac{1}{1.2}\)
1/ Tính
\(\dfrac{\left(1+2+3+...+100\right).\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)
2/ Tìm x:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
3/ Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh: \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
4/ Tìm \(a,b\varepsilon Q:a+b=a.b=a:b\)
Giúp mik nha mai mik cần rồi.
Tính:
a/\(\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}}{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}:\dfrac{3+\dfrac{3}{2}+\dfrac{3}{3}+\dfrac{3}{4}}{2-\dfrac{2}{2}+\dfrac{2}{3}-\dfrac{2}{4}}\)
b/\(\dfrac{1+\dfrac{1}{4}+\dfrac{1}{1+\dfrac{1}{4}}}{1-\dfrac{1}{4}-\dfrac{1}{1-\dfrac{1}{4}}}\)
c/\(\dfrac{\dfrac{2}{5}-\dfrac{7}{5}}{\dfrac{2}{5}-\dfrac{\dfrac{3}{4}}{\dfrac{3}{4}.\dfrac{3}{7}-1}}-\dfrac{1}{\dfrac{3}{7}\left(\dfrac{3}{4}.\dfrac{3}{7}.\dfrac{2}{5}-\dfrac{2}{5}-\dfrac{3}{4}\right)}\)
d/\(\left(\dfrac{\dfrac{4}{3}}{2+\dfrac{4}{3}}+\dfrac{2-\dfrac{4}{3}}{\dfrac{4}{3}}\right).\left(\dfrac{\dfrac{2}{3}}{4+\dfrac{2}{3}}-\dfrac{4-\dfrac{2}{3}}{\dfrac{2}{3}}\right)\)
Giúp mik với các bạn ơi 1 bài thôi cug đc.