Tính tổng
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{\left(3n-1\right)\left(3n-2\right)}\)
Chứng minh :
a, \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{n}{6n+4}\)
Đặt :
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{3}{2.5}+\dfrac{3}{5.8}+............+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+........+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)
\(\Leftrightarrow3A=\dfrac{1}{2}-\dfrac{1}{3n+2}\)
@Akai Haruma em không hiểu tại sao bài kia chị lại tick cho bạn đó ạ,đề nói chứng minh,mak bạn đó đã làm hết đâu:
\(VT=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{3n-1}+\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(VT=\dfrac{1}{6}-\dfrac{1}{9n+6}\)
\(VT=\dfrac{9n+6}{54n+36}-\dfrac{6}{54n+36}\)
\(VT=\dfrac{9n+6-6}{54n+36}=\dfrac{9n}{54n+36}=\dfrac{9n}{9\left(6n+4\right)}=\dfrac{n}{6n+4}=VP\left(đpcm\right)\)
Tính các tổng sau:
A=\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+.....+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
B=\(\dfrac{1}{1.3.5}+\dfrac{1}{3.5.7}+\dfrac{1}{5.7.9}+....+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}\)
C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+....+\sqrt{1+\dfrac{1}{2018^2}+\dfrac{1}{2019^2}}\)
\(\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{1}{3}\left(\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(\Rightarrow A=\dfrac{3n}{6\left(3n+2\right)}=\dfrac{n}{6n+4}\)
\(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)\left(2n+3\right)}=\dfrac{1}{4}\left(\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{3.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{4}\left(\dfrac{1}{1.3}-\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(\Rightarrow B=\dfrac{n\left(n+2\right)}{3\left(2n+1\right)\left(2n+3\right)}\)
\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{2018}-\dfrac{1}{2019}\)
\(\Rightarrow C=2019-\dfrac{1}{2019}\)
chứng minh rằng với mọi số tự nhiên n khác 0 ta đều có:
a) \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+....+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}=\dfrac{n}{6n+4}\)
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{3n+2}{6n+4}-\dfrac{2}{6n+4}\right)\)
\(=\dfrac{1}{3}.\dfrac{3n}{6n+4}\)
\(=\dfrac{n}{6n+4}\) ( đpcm )
Vậy...
Chứng minh rằng với mọi số tự nhiên khác 0 ta đều có :
a) \(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right).\left(3n+2\right)}=\dfrac{n}{6n+4}\)
b) \(\dfrac{5}{3.7}+\dfrac{5}{7.11}+\dfrac{5}{11.15}+...+\dfrac{5}{\left(4n-1\right).\left(4n+3\right)}=\dfrac{5n}{4n+3}\)
giúp mk với
a)
ta có:
\(\left\{{}\begin{matrix}\dfrac{b-a}{b-a}=1..\forall a\ne b\\\dfrac{b-a}{a.b}=\dfrac{1}{a}-\dfrac{1}{b}..\forall a,b\ne0\end{matrix}\right.\)(*)
\(A=\dfrac{1}{2.5}+\dfrac{1}{5.8}+..+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\left\{{}\begin{matrix}a=3n-1\\b=3n+2\end{matrix}\right.\)\(\Rightarrow b-a=3..\forall n\)
Thay (*) vào dãy A
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-....+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(A=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)=\dfrac{1}{3}\left(\dfrac{3n+2-2}{2.\left(3n+2\right)}\right)=\dfrac{n}{6n+4}=VP\rightarrow dpcm\)
B) tương tự
Tính tổng S(n) = \(\dfrac{1}{2,5}+\dfrac{1}{5,8}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\).
Bn viết để sai rồi, mk sửa lại :)
\(S\left(n\right)=\dfrac{1}{2.5}+\dfrac{1}{5.8}+.........+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3S\left(n\right)=\dfrac{3}{2.5}+\dfrac{3}{5.8}+.........+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\)
\(\Leftrightarrow3S\left(n\right)=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+......+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\)
\(\Leftrightarrow3S\left(n\right)=\dfrac{1}{2}-\dfrac{1}{3n+2}\)
\(\Leftrightarrow S\left(n\right)=\dfrac{\dfrac{1}{2}-\dfrac{1}{3n+2}}{3}\)
Tìm các giới hạn sau:
\(a,\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(b,\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(b,lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}\)
\(=lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(\dfrac{1}{n}-\dfrac{10}{n^2}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(\dfrac{3}{n^2}-\dfrac{3}{n^3}\right)}=0\)
\(a,lim\dfrac{4n^5-3n^2}{\left(3n^2-2\right)\left(1-4n^3\right)}\)
\(=lim\dfrac{4-\dfrac{3}{n^3}}{\left(3-\dfrac{2}{n^2}\right)\left(\dfrac{1}{n^3}-4\right)}\)
\(=\dfrac{4-0}{\left(3-0\right)\left(0-4\right)}=\dfrac{4}{-12}=-\dfrac{1}{3}\)
\(\lim\dfrac{\left(n^2+1\right)\left(n-10\right)^2}{\left(n+1\right)\left(3n-3\right)^3}=\lim\dfrac{\left(1+\dfrac{1}{n^2}\right)\left(1-\dfrac{10}{n}\right)^2}{\left(1+\dfrac{1}{n}\right)\left(3-\dfrac{3}{n}\right)^3}=\dfrac{1.1^2}{1.3}=\dfrac{1}{3}\)
CMR":
\(\dfrac{1}{3}\cdot\dfrac{4}{6}\cdot\dfrac{7}{9}\cdot.......\cdot\dfrac{\left(3n-2\right)}{3n}\cdot\dfrac{\left(3n+1\right)}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)
Tinh tong S(n)=\(\dfrac{1}{2,5}+\dfrac{1}{5,8}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{3n+2-2}{2\left(3n+2\right)}=\dfrac{n}{2\left(3n+2\right)}\)
Tính giới hạn :
L = lim \(\dfrac{\left(n^2+2n\right)\left(2n^3+1\right)\left(4n+5\right)}{\left(n^4-3n-1\right)\left(3n^2-7\right)}\)
Dang này thì cứ chọn số hạng có mũ cao nhất trên tử và mẫu là được. Nó là ngắt vô cùng lớn hay bé gì đấy
\(=lim\dfrac{8n^6}{3n^6}=\dfrac{8}{3}\)