Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 22:23

a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)

=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)

=>\(xy=5k;x^2+y^2=8k\)

\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)

b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)

=>x=a*k; y=b*k; z=c*k

\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)

\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)

Đức Anh Ramsay
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:14

Ta có: \(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}\cdot\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)

\(=\dfrac{y}{x-y}-\dfrac{x\left(x^2-y^2\right)}{x^2+y^2}\cdot\left(\dfrac{x\left(x+y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}-\dfrac{y\cdot\left(x-y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}\right)\)

\(=\dfrac{y}{x-y}-\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\cdot\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)

\(=\dfrac{y}{x-y}-\dfrac{x\cdot\left(x^2+y^2\right)}{\left(x^2+y^2\right)\cdot\left(x-y\right)}\)

\(=\dfrac{y}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{y-x}{x-y}=\dfrac{-\left(x-y\right)}{x-y}=-1\)

Buddy
Xem chi tiết
Vui lòng để tên hiển thị
22 tháng 7 2023 lúc 9:24

`x/(x+y) + (2xy)/(x^2-y^2) - y(x+y)`

`= (x(x-y))/(x^2-y^2) + (2xy)/(x^2-y^2) - (y(x-y))/(x^2-y^2)`

`= (x^2 - xy + 2xy - xy + y^2)/(x^2-y^2)`

`= (x^2+y^2)/(x^2-y^2)`

HT.Phong (9A5)
22 tháng 7 2023 lúc 9:25

\(\dfrac{x}{x+y}+\dfrac{2xy}{x^2-y^2}-\dfrac{y}{x+y}\)

\(=\dfrac{x-y}{x+y}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2+y^2}{x^2-y^2}\)

Đặng Phương Linh
22 tháng 7 2023 lúc 9:28

\(MTC:x^2-y^2=\left(x+y\right)\left(x-y\right)\\ =\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}+\dfrac{2xy}{x^2-y^2}-\dfrac{y\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}\\ =\dfrac{x\left(x-y\right)+2xy-y\left(x-y\right)}{x^2-y^2}\\ =\dfrac{x^2-xy+2xy-xy+y^2}{x^2-y^2}=\dfrac{x^2+y^2}{x^2-y^2}\)

 

 

 

 

nguyen ngoc son
Xem chi tiết
Dii's Thiên
4 tháng 1 2021 lúc 21:36

a, \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)=\(\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)   = \(\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)  =\(\dfrac{x+y}{4}\) 

꧁༺β£ɑℭƙ £❍ζʊꜱ༻꧂
4 tháng 1 2021 lúc 21:40

a. \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)

\(=\dfrac{x+y}{4}\)

b. \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x+1\right)\left(x-1\right)}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)

\(=\dfrac{x+1}{2\left(x-1\right)}\)

Nguyễn Lê Phước Thịnh
4 tháng 1 2021 lúc 21:41

a) Ta có: \(\dfrac{x^2+y^2}{4\left(x+y\right)}+\dfrac{2xy}{4\left(x+y\right)}\)

\(=\dfrac{x^2+2xy+y^2}{4\left(x+y\right)}\)

\(=\dfrac{\left(x+y\right)^2}{4\left(x+y\right)}\)

\(=\dfrac{x+y}{4}\)

b) Ta có: \(\dfrac{x+5}{2x-2}-\dfrac{4}{x^2-1}:\dfrac{2}{x+1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x+5}{2\left(x-1\right)}-\dfrac{4}{2\left(x-1\right)}\)

\(=\dfrac{x+5-4}{2\left(x-1\right)}\)

\(=\dfrac{x+1}{2x-2}\)

pro
Xem chi tiết
Trần Minh Hoàng
19 tháng 1 2021 lúc 19:03

Đẳng thức đã cho tương đương với:

\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)

\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)

\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).

Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).

pro
19 tháng 1 2021 lúc 19:30

Vậy từ giả thiết đó bạn có thể CMR P=0 đc k

Giúp mk ba mk đg cần gấp

cao cấp
Xem chi tiết
Lê Kiều Trinh
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 8:42

\(a,VT=\dfrac{x^2+2xy+4-3x^2-3xy}{\left(x+y\right)\left(x+2y\right)}=\dfrac{-2x^2-xy+4}{\left(x+y\right)\left(x-2y\right)}=VP\\ b,VP=\dfrac{\left(x+y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x+y}{x-y}=VT\)

Toru
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 18:12

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

Nàng tiên cá
Xem chi tiết
tran huy vu
11 tháng 12 2018 lúc 21:14

a)\(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}\)

\(\frac{-5}{2\left(2+y\right)}+\frac{y-2}{y\left(2+y\right)}\)

\(\frac{-5y}{2y\left(2+y\right)}+\frac{2y-4}{2y\left(2+y\right)}\)

\(\frac{-5y+2y-4}{2y\left(2+y\right)}\)

\(\frac{-3y-4}{2y\left(2+y\right)}\)

tran huy vu
11 tháng 12 2018 lúc 21:23

b)\(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}\)

\(\frac{x-1}{x\left(x-2y\right)}+\frac{3}{x\left(2y-x\right)}\)

\(\frac{x-1}{x\left(x-2y\right)}+\frac{-3}{x\left(x-2y\right)}\)

\(\frac{x-1-3}{x\left(x-2y\right)}\)

\(\frac{x-4}{x\left(x-2\right)}\)

tran huy vu
11 tháng 12 2018 lúc 21:26

Nè bạn ơi, tớ không hiểu câu a của tớ bị làm sao lên tớ làm lại nhé