Cho : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính \(A=\dfrac{yz}{x^{2}-2yz}+\dfrac{xz}{y^{2}+2xz}+\dfrac{xy}{z^{2}+2xy}\)
Mong m.n làm giúp e với ạ
Em cảm ơn
Cho 3 số thực x,y,z#0, đôi một phân biệt và thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính P= \(\dfrac{yz}{x^2+2yz}+\dfrac{zx}{y^2+2zx}+\dfrac{xy}{z^2+2xy}\)
Giúp Mình Với :33
Cho xyz = 1, tính P= \(\dfrac{x+2xy+1}{x+xy+xz+1}+\dfrac{y+2yz+1}{y+yz+ỹx+1}+\dfrac{z+2zx+1}{z+zx+zy+1}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính \(A=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Cho các số x, y, z thỏa mãn: xy+yz+zx=1
Tính giá trị biểu thức
\(M=\dfrac{1}{x^2+2yz-1}+\dfrac{1}{y^2+2zx-1}+\dfrac{1}{z^2+2xy-1}\)
Với x,y,z > 0 và x + y + z = 1/2. Tìm max của: \(P=\dfrac{x}{\sqrt{x+2yz}}+\dfrac{y}{\sqrt{y+2xz}}+\dfrac{z}{\sqrt{z+2xy}}\)
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=0. Tính giá trị của biểu thức A=\(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
Mong mọi người giúp đỡ
Cho x + y + z = 0; xyz ≠ 0 . Tính \(A=\dfrac{x^2}{yz}+\dfrac{y^2}{xz}+\dfrac{z^2}{xy}\)
Cho x; y là các số không âm, z\(\le\) 0 thỏa mãn x^2 + y^2 + z^2 = 1
Chứng minh: \(\dfrac{x}{1-yz}+\dfrac{y}{1-xz}-\dfrac{z}{1+xy}\ge1\)