Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
😈tử thần😈

Cho  : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)

Tính \(A=\dfrac{yz}{x^{2}-2yz}+\dfrac{xz}{y^{2}+2xz}+\dfrac{xy}{z^{2}+2xy}\)

Mong m.n làm giúp e với ạ  

Em cảm ơn 

Thu Thao
2 tháng 5 2021 lúc 17:50

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) (\(x,y,z\ne0;x\ne y\ne z\)

\(\Leftrightarrow xy+yz+xz=0\)

\(\Leftrightarrow2yz=yz-xy-xz\)

\(\Leftrightarrow x^2+2yz=\left(x-y\right)\left(x-z\right)\)

CMTT : \(\left\{{}\begin{matrix}y^2+2xz=\left(y-z\right)\left(y-x\right)\\z^2+2xy=\left(z-x\right)\left(z-y\right)\end{matrix}\right.\)

\(A=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{y^2z-yz^2-x^2z+xz^2+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\dfrac{z^2-xz-yz+xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{x\left(y-z\right)-z\left(y-z\right)}{\left(x-z\right)\left(y-1\right)}=1\)

Thề, gõ máy mệt gấp đôi viết tay =))


Các câu hỏi tương tự
cao cấp
Xem chi tiết
Zata
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Hoàng Đức Khánh
Xem chi tiết
Quang huy Vu tien
Xem chi tiết
Minz Ank
Xem chi tiết
Phoenix_Alone
Xem chi tiết
Lê Huy Hoàng
Xem chi tiết
Toru
Xem chi tiết