Tìm GTNN của biểu thức :
\(A=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x+2\right)^2}\)
Tìm GTNN của biểu thức:
\(A=\dfrac{\left(x+5\right)\left(x-1\right)}{\left(x+3\right)^2}\)
Đặt \(x+3=t\ne0\Rightarrow x=t-3\)
\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)
Tìm GTNN của biểu thức: \(A=\dfrac{3\left|x+2\right|+1}{\left|x+2\right|+1}\)
Tìm GTNN của mỗi biểu thức sau:
a) \(P=\left(x+30\right)^2+\left(y-4\right)^2+1975 \)
b)\(Q=\left(3x+1\right)^2+\left|2y-\dfrac{1}{3}\right|+\sqrt{5}\)
c)\(R=\dfrac{3}{1-x-x^2}\)
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
Tìm GTNN của biểu thức:
\(\left|2021-x\right|+\dfrac{1}{\sqrt{\left(-2\right)^2}}.\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
Tìm GTNN của biểu thức \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\)
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)
nên \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\dfrac{25}{16}\)
Dấu '=' xảy ra khi x=-1/2
Có \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)
\(A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy min \(A=\dfrac{25}{16}\Leftrightarrow x=\dfrac{-1}{2}\)
Cho biểu thức P=\(\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
a) Rút gọn P
b) Tính giá trị của P biết \(x=\dfrac{1}{4}\)
c) Tìm GTNN của biểu thức \(\dfrac{1}{P}\)
giúp mk vs!!!!
ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)
a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)
\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)
\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)
b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:
\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)
\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)
\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)
Tìm GTNN của biểu thức: P = \(\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
Điều kiện: \(x;y>1\)
\(A=\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
\(\ge\dfrac{\left(x+y\right)^2}{x+y-2}\)
Đặt \(x+y=a\left(a>2\right)\)
\(\Rightarrow A=\dfrac{a^2}{a-2}=\dfrac{8\left(a-2\right)+\left(a^2-8a+16\right)}{a-2}=8+\dfrac{\left(a-4\right)^2}{a-2}\ge8\)
Dấu "=" xảy ra khi x = y = 2
Vậy \(Min_A=8\Leftrightarrow x=y=2\)
tìm GTNN của biểu thức: A= \(\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)
\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)
Cho 1<x<2. Tìm GTNN của biểu thức P= \(\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(2-x\right)^2}+\dfrac{1}{\left(x-1\right)\left(2-x\right)}\)