Cho \(a,b>0\) và \(\dfrac{4}{a^2}+\dfrac{1}{b^2}=0\). Tìm : \(MinP=2a\left(1-2b\right)+a^2+6b^2\)
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
Cho 0<a, b, c<1; ab+bc+ca=1. Tìm GTNN của \(P=\dfrac{a^2.\left(1-2b\right)}{b}+\dfrac{b^2.\left(1-2c\right)}{c}+\dfrac{c^2.\left(1-2a\right)}{a}\)
\(A=\left(\dfrac{1}{2a-b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) rút gọn biểu thức A
b)tính giá trị biểu thức A biết 4a^2+b^2=5ab a>b>0
a: Ta có: \(\frac{1}{2a-b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\)
\(=\frac{1}{2a-b}-\frac{a^2-1}{a^2\left(2a-b\right)+\left(2a-b\right)}\)
\(=\frac{1}{2a-b}-\frac{a^2-1}{\left(2a-b\right)\left(a^2+1\right)}=\frac{a^2+1-a^2+1}{\left(2a-b\right)\left(a^2+1\right)}=\frac{2}{\left(2a-b\right)\left(a^2+1\right)}\)
\(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\)
\(=\frac{4a+2b}{ab\left(a^2+1\right)}-\frac{2}{a}=\frac{4a+2b-2b\left(a^2+1\right)}{ab\left(a^2+1\right)}\)
\(=\frac{4a-2a^2b}{ab\left(a^2+1\right)}=\frac{2a\left(2-ab\right)}{ab\cdot\left(a^2+1\right)}=\frac{2\left(2-ab\right)}{b\left(a^2+1\right)}\)
Ta có: \(A=\left(\frac{1}{2a-b}-\frac{a^2-1}{2a^3-b+2a-a^2b}\right):\left(\frac{4a+2b}{a^3b+ab}-\frac{2}{a}\right)\)
\(=\frac{2}{\left(2a-b\right)\left(a^2+1\right)}:\frac{2\left(2-ab\right)}{b\left(a^2+1\right)}=\frac{2b\left(a^2+1\right)}{2\left(2-ab\right)\left(2a-b\right)\left(a^2+1\right)}=\frac{b}{\left(2-ab\right)\left(2a-b\right)}\)
b:
Sửa đề: b>a>0
\(4a^2+b^2=5ab\)
=>\(4a^2-5ab+b^2=0\)
=>\(4a^2-4ab-ab+b^2=0\)
=>(a-b)(4a-b)=0
TH1: a-b=0
=>a=b
mà a>b
nên Loại
TH2: 4a-b=0
=>b=4a(nhận)
\(A=\frac{b}{\left(2-ab\right)\left(2a-b\right)}\)
\(=\frac{4a}{\left(2-a\cdot4a\right)\left(2a-4a\right)}=\frac{4a}{\left(2-4a^2\right)\left(-2a\right)}\)
\(=\frac{4a}{-2a\cdot\left(-2\right)\left(2a^2-1\right)}=\frac{1}{2a^2-1}\)
Cho hai mặt phẳng (P): ax+2y-az+1=0 và (Q): 3x-(b+1)y+2z-b=0. Tìm hệ thứcliên hệ giữa a và b để (P) và (Q) vuông góc với nhau.
A. a-2b-2=0
B. 2a-b=0
C. \(\dfrac{a}{3}=\dfrac{2}{-\left(b+1\right)}=\dfrac{-a}{2}\ne\dfrac{1}{-b}\)
D. \(\dfrac{a}{3}\ne\dfrac{2}{-\left(b+1\right)}\ne\dfrac{-a}{2}\ne\dfrac{1}{-b}\)
Cho biểu thức: \(A=\left(\dfrac{1}{2a+b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) Rút gọn A
b) Biết \(2a^2+2b^2=5ab;a>b>0\). Tính A
Cho a, b, c > 0 thỏa mãn : \(\dfrac{3}{b}+\dfrac{4}{a}+\dfrac{4}{c}=3\)
Tìm GTNN của : \(A=\dfrac{2\left(a+b\right)^2}{2a+3b}+\dfrac{\left(b+2c\right)^2}{2b+c}+\dfrac{\left(2c+a\right)^2}{c+2a}\)
Áp dụng BĐt cô-si, ta có \(\frac{2\left(a+b\right)^2}{2a+3b}\ge\frac{8ab}{2a+3b}=\frac{8}{\frac{2}{b}+\frac{3}{a}}\)
\(\frac{\left(b+2c\right)^2}{2b+c}\ge\frac{8bc}{2b+c}=\frac{8}{\frac{2}{c}+\frac{1}{b}}\)
\(\frac{\left(2c+a\right)^2}{c+2a}\ge\frac{8ac}{c+2a}\ge\frac{8}{\frac{1}{a}+\frac{2}{c}}\)
Cộng 3 cái vào, ta có
A\(\ge8\left(\frac{1}{\frac{2}{b}+\frac{3}{a}}+\frac{1}{\frac{1}{b}+\frac{2}{c}}+\frac{1}{\frac{1}{a}+\frac{2}{c}}\right)\ge8\left(\frac{9}{\frac{3}{b}+\frac{4}{c}+\frac{4}{a}}\right)=8.\frac{9}{3}=24\)
Vậy A min = 24
Neetkun ^^
Cho a,b,c>0 tm: a+b+c=ab+bc+ca
CMR: \(\dfrac{2a-1}{a^2-a+1}+\dfrac{2b-1}{b^2-b+1}+\dfrac{2c-1}{c^2-c+1}=\dfrac{3}{\left(a+b-1\right)\left(b+c-1\right)\left(c+a-1\right)}\)
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Nhức nhối mãi bài này vì nó làm lag hết máy
Giải
Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)
Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)
\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)
Lại theo BĐT Cauchy-Schwarz ta có:
\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)
Ta còn phải chứng minh
\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)
\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)
Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)
Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)
\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)
Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)
\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)
Câu hỏi của Neet - Toán lớp 9 | Học trực tuyến:Gazeta Matematia
còn câu này là USAMO 2003
Toàn đề máu mặt :)
Cho a,b,c>0 và a+b+c=3Chứng minh \(\dfrac{a\left(a+bc\right)^2}{b\left(ab+2c^2\right)}+\dfrac{b\left(b+ca\right)^2}{c\left(bc+2a^2\right)}+\dfrac{c\left(c+ab\right)^2}{a\left(ca+2b^2\right)}\ge4\)
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)
\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)
Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)
Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)
\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)
\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)
sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2