Giải pt sau:
cos(2x-18)tan50+sin(2x-18)=\(\dfrac{1}{2cos130}\)
22. Tìm nghiệm dương nhỏ nhất của PT: \(3\sin^2x+2\sin x\cos x-\cos^2x=0\)
23. Giải PT: \(\sqrt{3}\cos x+2\sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{1}\right)=1\)
\(\sqrt{3}cosx+2sin^2\left(\dfrac{x}{2}-\pi\right)=1\)
\(\Leftrightarrow\sqrt{3}cosx+2sin^2\dfrac{x}{2}=1\)
\(\Leftrightarrow\sqrt{3}cosx-cosx=0\Leftrightarrow cosx=0\Leftrightarrow x=\dfrac{\pi}{2}+k\pi\) ( k thuộc Z )
Vậy ...
22.
Nhận thấy \(cosx=0\) không phải nghiệm, chia 2 vế cho \(cos^2x\)
\(3tan^2x+2tanx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{3}\right)+k\pi\end{matrix}\right.\)
Nghiệm dương nhỏ nhất của pt là: \(x=arctan\left(\dfrac{1}{3}\right)\)
22. PT đã cho tương đương
3 - 4cos2x + 2 sinxcosx = 0
⇔ 3 - 2 - 2cos2x + sin2x = 0
⇔ 1 - 2cos2x + sin2x = 0
⇔ 1 + sin2x = 2cos2x
⇔ sin\(\dfrac{\pi}{2}\) + sin2x = 2cos2x
⇔ \(2sin\left(\dfrac{\pi}{4}+x\right).cos\left(\dfrac{\pi}{4}-x\right)\) = 2cos2x
Do \(\left(\dfrac{\pi}{4}-x\right)+\left(\dfrac{\pi}{4}+x\right)=\dfrac{\pi}{2}\)
⇒ \(sin\left(\dfrac{\pi}{4}+x\right)=cos\left(\dfrac{\pi}{4}-x\right)\)
Vậy sin2\(\left(x+\dfrac{\pi}{4}\right)\) = cos2x
Cái này là hiển nhiên ????
Giải pt sau: \(\sin^2x+\sin2x-2\cos^2x=\dfrac{1}{2}\)
Pt \(\Leftrightarrow sin^2x+2.sinx.cosx-2cos^2x=\dfrac{1}{2}\left(sin^2x+cos^2x\right)\)
\(\Leftrightarrow sin^2x.\dfrac{1}{2}+2.sinx.cosx-\dfrac{5}{2}cos^2x=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx+5cosx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=-5cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-5\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arc.tan\left(-5\right)+k\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
Giải pt : \(\dfrac{\cos x\left(1-2\sin x\right)}{2\cos^2x-\sin x-1}\)= \(\sqrt{3}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{2}+k2\pi\\x\ne\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\\end{matrix}\right.\)
\(\dfrac{cosx-2sinx.cosx}{2cos^2x-1-sinx}=\sqrt{3}\)
\(\Leftrightarrow\dfrac{cosx-sin2x}{cos2x-sinx}=\sqrt{3}\)
\(\Rightarrow cosx-sin2x=\sqrt{3}cos2x-\sqrt{3}sinx\)
\(\Leftrightarrow cosx+\sqrt{3}sinx=\sqrt{3}cos2x+sin2x\)
\(\Leftrightarrow\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos\left(2x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=x-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\left(loại\right)\end{matrix}\right.\)
Vậy \(x=-\dfrac{\pi}{6}+k2\pi\)
a)\(sinx+cosx=\dfrac{1}{cosx}\)
b)\(4sin2x-3sin\left(2x-\dfrac{\pi}{2}\right)=5\)
c)\(sin2x+sin^2x=\dfrac{1}{2}\)
Giải hộ em 3 pt trên với! Em cảm ơn.
a.
ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)
Chia 2 vế cho cosx:
\(tanx+1=\dfrac{1}{cos^2x}\)
\(\Rightarrow tanx+1=1+tan^2x\)
\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow2sin2x+2sin^2x=1\)
\(\Leftrightarrow2sin2x=1-2sin^2x\)
\(\Leftrightarrow2sin2x=cos2x\)
\(\Rightarrow tan2x=\dfrac{1}{2}\)
\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)
\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)
b.
\(\Leftrightarrow4sin2x+3sin\left(\dfrac{\pi}{2}-2x\right)=5\)
\(\Leftrightarrow4sin2x+3cos2x=5\)
\(\Leftrightarrow\dfrac{4}{5}sin2x+\dfrac{3}{5}cos2x=1\)
Đặt \(\dfrac{4}{5}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{3}{5}=sina\)
\(\Rightarrow sin2x.cosa+cos2x.sina=1\)
\(\Rightarrow sin\left(2x+a\right)=1\)
\(\Rightarrow2x+a=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\dfrac{a}{2}+\dfrac{\pi}{4}+k\pi\)
giải pt: (2x+1)(x+1)2(2x+3)=18
\(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2=18\)
\(\Leftrightarrow\left(2x+2-1\right)\left(2x+2+1\right)\left(x+1\right)^2=18\)
\(\Leftrightarrow\left(\left(2x+2\right)^2-1\right)\left(x+1\right)^2=18\)
\(\Leftrightarrow4\left(x+1\right)^4-\left(x+1\right)^2-18=0\)
Đặt t = \(\left(x+1\right)^2\) \(\left(t\ge0\right)\)
pt \(\Leftrightarrow4t^2-t-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{9}{4}\left(nh\right)\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1\right)^2-\dfrac{9}{4}=0\)
\(\Leftrightarrow\left(x+1-\dfrac{3}{2}\right)\left(x+1+\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)
Giải pt:
\(\sqrt{2x^2+16x+18}+\sqrt{x^2-1}=2x+4\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\-4+\sqrt{7}\le x\le-1\end{matrix}\right.\)
Khi x thỏa ĐKXĐ, vế phải luôn dương, bình phương 2 vế ta được:
\(\Leftrightarrow3x^2+16x+17+2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=4x^2+16x+16\)
\(\Leftrightarrow2\sqrt{\left(x^2-1\right)\left(2x^2+16x+18\right)}=x^2-1\)
\(\Leftrightarrow4\left(x^2-1\right)\left(2x^2+16x+18\right)=\left(x^2-1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\4\left(2x^2+16x+18\right)=x^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\7x^2+64x+73=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{-32+3\sqrt{57}}{7}\\x=\dfrac{-32-3\sqrt{57}}{7}\left(loại\right)\end{matrix}\right.\)
(2x+1)(x+1)2(2x+3)=18
giải pt
(2x+1)(x+1)2(2x+3)=18
<=> (2x+2-1)(x+1)2(2x+2+1)=18
Đặt y=x+1, ta có:
(2y-1)y2(2y+1)=18
Ta có
(2x+1)(x+1)2(2x+3)=18
=> (x+1)2(4x2+8x+3)-18=0
=> (x2+2x+1)(4x2+8x+3)-18=0
Đặt x2+2x+1=a ta có
a.(4a-1)-18=0
=> 4a2-a-18=0
=> 4a2 +8a-9a-18=0
=> 4a(a+2)-9(a+2)=0
=> (a+2)(4a-9)=0
Với a=x2+2x+1biểu thức trên trở thành
(x2+2x+3)(4x2+8x-5)=0
=> x2+2x+3=0 hoặc 4x2+8x-5=0
• x2+2x+3=0 => phương trình vô nghiệm
• 4x2+8x-5=0 => x=1/2 hoặc x=-5/2
Vậy x=1/2 và x=-5/2 là nghiệm của phương trình
Giải các pt sau:
a) \(\sin\left(3x+60^o\right)=\dfrac{1}{2}\)
b) \(\cos\left(2x-\dfrac{\pi}{3}\right)=\dfrac{-\sqrt{2}}{2}\)
c) \(\tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)
d) \(\cot\left(2x+\pi\right)=-1\)
a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)
\(\Rightarrow3x+60=30+2k180\)
\(\Rightarrow3x=2k180-30\)
\(\Leftrightarrow x=120k-10\)
Vậy ...
b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)
Vậy ...
c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)
\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)
Vậy ...
d, Ta có : \(\cot\left(2x+\pi\right)=-1\)
\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)
\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)
Vậy ...
a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))
Vậy...
b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))
Vậy...
c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)
\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)
Vậy...
d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)
\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)
\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)
Vậy...
giải pt
(2x+1)(x+1)2(2x+3)-18=0