Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Lấp La Lấp Lánh
31 tháng 10 2021 lúc 11:56

ĐKXĐ: \(a,b,c\ne0\)

\(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2013.\dfrac{1}{2013}\)

\(\Leftrightarrow1+1+1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}=1\)

\(\Leftrightarrow\dfrac{a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc}{abc}=0\)

\(\Leftrightarrow a^2c+a^2b+b^2c+ab^2+bc^2+ac^2+2abc=0\)

\(\Leftrightarrow ac\left(a+b\right)+ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Mà \(a+b+c=2013\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2013\\b=2013\\c=2013\end{matrix}\right.\)(đpcm)

 

Bách Bách
Xem chi tiết
Nguyễn Công Quốc Huy
Xem chi tiết
Akai Haruma
4 tháng 8 2017 lúc 22:40

Lời giải:

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ac=0\)

\(\Rightarrow 0=(ab+bc+ac)^2=a^2b^2+b^2c^2+c^2a^2+2abc(a+b+c)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=0\)

Hiển nhiên \(a^2b^2,b^2c^2,c^2a^2\geq 0\rightarrow a^2b^2+b^2c^2+c^2a^2\geq 0\)

Dấu bằng xảy ra khi \(ab=bc=ac=0\)

Vì vậy, không thể có TH \(a,b,c\neq 0\), do đó đề bài sai.

lưu tuấn anh
Xem chi tiết
Akai Haruma
28 tháng 9 2018 lúc 21:12

Lời giải:

\(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\)

\(\Rightarrow \frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}(1)\) (theo tính chất dãy tỉ số bằng nhau)

Mặt khác:

\(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}\Rightarrow \frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}\)

Hay \(\frac{a^3}{c^3}=\frac{a}{d}(2)\)

Từ \((1);(2)\Rightarrow \frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\) (đpcm)

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thanh Hằng
17 tháng 7 2018 lúc 21:31

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{ab+ac}{2}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\)

\(=\dfrac{ab+ac+bc+ba-ca-cb}{2+3-4}=\dfrac{2ab}{1}\) \(\left(1\right)\)

\(=\dfrac{bc+cb+bc+ba-ab-ac}{3+4-2}=\dfrac{2bc}{5}\left(2\right)\)

\(=\dfrac{ab+ac+ca+cb-bc-ba}{2+4-3}=\dfrac{2ac}{3}\)\(\left(3\right)\)

Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{2ab}{1}=\dfrac{2bc}{5}=\dfrac{2ac}{3}\)

\(\dfrac{2ab}{1}=\dfrac{2bc}{5}\Leftrightarrow\dfrac{a}{1}=\dfrac{c}{15}\) \(\Leftrightarrow\dfrac{a}{3}=\dfrac{c}{15}\left(I\right)\)

\(\dfrac{2bc}{5}=\dfrac{2ac}{3}\Leftrightarrow\dfrac{b}{5}=\dfrac{a}{3}\left(II\right)\)

Từ \(\left(I\right)+\left(II\right)\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\left(đpcm\right)\)

Nguyễn Thùy Chi
Xem chi tiết
Xem chi tiết

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)

 

      

 

Đoàn Hà Nhi
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
4 tháng 3 2018 lúc 7:46

Áp dụng BĐT Cauchy - schwarz dưới dạng engel ta có :

\(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\ge\dfrac{9}{2\left(a+b+c\right)}=\dfrac{4,5}{a+b+c}>\dfrac{3}{a+b+c}\)