Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 21:27

\(a^5+b^2+ab+6\ge3a^2b+6\)

\(\Rightarrow P\le\dfrac{1}{\sqrt{3}}\left(\dfrac{1}{\sqrt{a^2b+2}}+\dfrac{1}{\sqrt{b^2c+2}}+\dfrac{1}{\sqrt{c^2a+2}}\right)\le\sqrt{\dfrac{1}{a^2b+2}+\dfrac{1}{b^2c+2}+\dfrac{1}{c^2a+2}}=\sqrt{Q}\)

\(Q=\dfrac{c}{a+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}=\dfrac{1}{2}\left(1-\dfrac{a}{a+2c}+1-\dfrac{b}{b+2a}+1-\dfrac{c}{c+2b}\right)\)

\(Q=\dfrac{3}{2}-\dfrac{1}{2}\left(\dfrac{a^2}{a^2+2ac}+\dfrac{b^2}{b^2+2ab}+\dfrac{c^2}{c^2+2bc}\right)\)

\(Q\le\dfrac{3}{2}-\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=1\)

\(\Rightarrow P\le\sqrt{1}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

ASOC
Xem chi tiết
Hà Trần
Xem chi tiết
Lightning Farron
16 tháng 10 2017 lúc 23:05

Ta có BĐT phụ: \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^2+ab+b^2\right)\ge0\)*đúng*

\(\Rightarrow a^5+b^5+ab\ge a^2b^2\left(a+b\right)+ab=ab\left(ab\left(a+b\right)+1\right)\)

\(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\ge\dfrac{ab}{ab\left(ab\left(a+b\right)+1\right)}=\dfrac{1}{ab\left(a+b\right)+1}\)

\(=\dfrac{c}{abc\left(a+b\right)+c}=\dfrac{c}{a+b+c}\left(abc=1\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{a+b+c}{a+b+c}=1=VP\)

Khi \(a=b=c=1\)

Diệp Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2021 lúc 20:35

\(C=\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{ab}+\dfrac{1}{ab}\right)+3\left(ab+\dfrac{1}{16ab}\right)+\dfrac{29}{16ab}\)

\(C\ge\dfrac{16}{a^2+b^2+2ab}+6\sqrt{\dfrac{ab}{16ab}}+\dfrac{29}{4\left(a+b\right)^2}\ge\dfrac{16}{1}+\dfrac{6}{4}+\dfrac{29}{4}=\dfrac{99}{4}\)

Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 6 2021 lúc 23:57

Đề bài sai, bạn kiểm tra lại điều kiện \(a^2+b^2+c^2=1\)

Tạ Duy Bảo
Xem chi tiết
Lightning Farron
18 tháng 8 2018 lúc 23:09

bài này dễ thôi bạn, quan trọng là nó hơi dài nên mình không có hứng làm chi tiết

BĐT đã cho viết lại thành

\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)^2+72abc\left(ab+bc+ca\right)-\left(a+b+c\right)^5\le0\)

\(\Leftrightarrow-\dfrac{3}{2}\left(8a^3+7a^2b+7a^2c-7ab^2-7ac^2+9b^2c+9bc^2\right)\left(b-c\right)^2-\dfrac{3}{2}\left(8b^3+7b^2c-7bc^2+9ac^2+7ab^2+9a^2c-7a^2b\right)\left(c-a\right)^2-\dfrac{3}{2}\left(9a^2b+9ab^2+7ac^2-7a^2c-7b^2c+7bc^2+8c^3\right)\left(a-b\right)^2\le0\)

Tạ Duy Bảo
18 tháng 8 2018 lúc 20:22
nguyễn viết hoàng
19 tháng 8 2018 lúc 11:11

ta có \(27abc\le\left(\sum a\right)^3=\left(\sum a\right)\)

khi đó bđt <=>

\(\sum a^3+\dfrac{8}{3}\left(\sum a\right)\left(\sum ab\right)\le\sum a^3+3\left(a+b\right)\Pi=\left(\sum a\right)^3=1\)

lyzimi
Xem chi tiết
Thắng Nguyễn
29 tháng 1 2017 lúc 17:58

Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)

\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)

\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\ge\left(a+b\right)^2a^2b^2\)\(\forall a,b>0\)

\(\Leftrightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)

\(\Leftrightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)

Tương tự ta có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)

Cộng theo vế ta có: \(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Thiên Kim
30 tháng 1 2017 lúc 20:19

mk có cách giải khác Lyzimi, Thắng Nguyễn và Minh Triều xem thử nha :)

\(\forall x;y>0\) ta dễ dàng chứng minh được \(x^5+y^5\ge xy\left(x^3+y^3\right)\) và \(x^3+y^3\ge xy\left(x+y\right)\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(x=y\)

(cái này để chứng minh bn thử biến đổi tương đương xem sao :)

Do đó \(a^5+b^5+ab\ge ab\left(a^3+b^3+1\right)\)

\(\Rightarrow\)\(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left(a^3+b^3+1\right)}=\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)(1)

Chứng minh tương tự \(\frac{bc}{b^5+c^5+bc}\le\frac{1}{bc\left(a+b+c\right)}\) (2) và \(\frac{ca}{c^5+a^5+ca}\le\frac{1}{ca\left(a+b+c\right)}\) (3)

Cộng (1), (2) và (3) ta có \(VT\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Rin Kagamine
3 tháng 2 2017 lúc 13:03

mình hông hiểu ???

1	Nguyễn Hoàng An
Xem chi tiết
Nguyen My Van
25 tháng 5 2022 lúc 10:14

Vì \(0\le a\le b\le c\le1\) nên:

\(\left(a-1\right)\left(b-1\right)\ge ab+1\ge a+b\Leftrightarrow\dfrac{1}{ab+1}\le\dfrac{1}{a+b}\Leftrightarrow\dfrac{c}{ab+1}\le\dfrac{c}{a+b}\left(1\right)\)

Tương tự: \(\dfrac{a}{bc+1}\le\dfrac{a}{b=c}\left(2\right);\dfrac{b}{ac+1}\le\dfrac{b}{a+c}\left(3\right)\)

Do đó: \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\left(4\right)\)

Mà: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\le\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(5\right)\)

Từ (4) và (5) suy ra \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\left(đpcm\right)\)

Hong Ra On
Xem chi tiết
Akai Haruma
25 tháng 11 2017 lúc 0:02

Lời giải:

Ta có:

\(\sum \frac{1}{a+ab}\geq \frac{3}{abc+1}\Leftrightarrow \sum \frac{abc+1}{a(b+1)}\geq 3\)

\(\Leftrightarrow \sum \frac{bc}{b+1}+\sum\frac{1}{a(b+1)}\geq 3\)

\(\Leftrightarrow \sum \frac{b(c+1)}{b+1}+\sum \frac{a+1}{a(b+1)}\geq 6\)

BĐT trên luôn đúng vì theo BĐT AM-GM thì:

\(\sum \frac{b(c+1)}{b+1}+\sum \frac{a+1}{a(b+1)}=\frac{b(c+1)}{b+1}+\frac{c(a+1)}{c+1}+\frac{a(b+1)}{a+1}+\frac{a+1}{a(b+1)}+\frac{b+1}{b(c+1)}+\frac{c+1}{c(a+1)}\)

\(\geq 6\sqrt[6]{\frac{abc(a+1)^2(b+1)^2(c+1)^2}{abc(a+1)^2(b+1)^2(c+1)^2}}=6\)

Do đó ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=1\)