\(\dfrac{x-2}{5}=\dfrac{x}{3}\)
B = 1+2+22+23+..........+22017
\(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
Bài 1: Tính
a) \(\dfrac{9}{5}+\dfrac{2}{5}\) x \(\dfrac{4}{6}\) b) \(\dfrac{3}{8}\) x 2 - \(\dfrac{6}{7}\) x \(\dfrac{1}{3}\)
Bài 2: Tính bằng cách thuận tiện nhất:
a) \(\dfrac{11}{23}+\dfrac{2}{23}+\dfrac{9}{23}+\dfrac{18}{23}\) b)\(\dfrac{25}{12}+\dfrac{17}{6}-\dfrac{15}{36}-\dfrac{15}{6}\)
Bài 3: Một hình chữ nhật có chiều rộng là \(\dfrac{3}{5}\) m và bằng một nửa chiều dài. Tính diện tích hình chữ nhật đó.
Giải đầy đủ pls
Bài 3
\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\) có bao nhiêu số nguyên X thỏa mãn
A 1 B 2 C 3 D 4
Bài 4
Nếu \(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\) Thì x là bao nhiêu
A 5 B 6 C -5 D -6
Bài 5
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
A 1 B 2 C \(\dfrac{99}{100}\) D \(\dfrac{1}{100}\)
Bài 3
\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\)
\(=\dfrac{33}{23}\)\(\le x\le\dfrac{90}{30}\)
\(=\dfrac{33}{23}\le x\le3\)
Mà \(x\in Z\) \(\Rightarrow\)\(x=2\)
Có 1 giá trị thỏa mãn
Chọn A
Bài 4
\(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\)
Chọn D
Bài 5
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{100}{100}-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
CHọn C
1)(3x2+2x+4)2=(x2-4)2
2) (2x2-3x-4)2=(x2-x)2
3) \(\dfrac{2}{x+1}-\dfrac{3}{x+2}=\dfrac{1}{3x+3}\)
4) \(\dfrac{x}{x-3}=\dfrac{1}{x+2}\)
5) \(\dfrac{4}{x-2}+\dfrac{x}{x+1}=\dfrac{x^2-2}{x^2-x-2}\)
gúp em tl câu hỏi trên vs ạ em đag cần gấp em c.ơn trước
\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)
\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)
\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow x=-1\left(loai\right)\)
Vậy \(S=\varnothing\)
\(4,\dfrac{x}{x-3}-\dfrac{1}{x+2}=0\left(dkxd:x\ne3;-2\right)\)
\(\Rightarrow x\left(x+2\right)-\left(x-3\right)=0\)
\(\Rightarrow x^2+3x-x+3=0\)
\(\Rightarrow x^2+2x+3=0\)
\(\Rightarrow S=\varnothing\)
\(\dfrac{x-2}{5}=\dfrac{x}{3}\)
\(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.........+\dfrac{1}{2^{2017}}\)
B=1+2+22+23+.............+22017
a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)
\(\Leftrightarrow3\left(x-2\right)=5x\)
\(\Leftrightarrow3x-6=5x\)
\(\Leftrightarrow5x-3x=6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)
\(\Leftrightarrow4x+92=2x+80\)
\(\Leftrightarrow4x-2x=80-92\)
\(\Leftrightarrow2x=-12\)
\(\Leftrightarrow x=-6\)
c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)
d, \(B=1+2+2^2+........+2^{2017}\)
\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)
\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)
\(< =>3x-6=5x=>x=-3\)
\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)
\(4x+92=3x+120=>x=28\)
Tính:
a) \(\dfrac{9-3x}{x^2+3x+4}-\dfrac{3x-23}{\left(1-x\right)\left(x+4\right)}\)
b) \(\dfrac{4-x}{x^3+2x}-\dfrac{x+5}{x^3-x^2+2x-2}\)
c)\(\dfrac{x^2-3}{x^3+2x^2-x-2}-\dfrac{x}{2-x-x}\)
a) Ta có: \(\dfrac{9-3x}{x^2+3x+4}-\dfrac{3x-23}{\left(1-x\right)\left(x+4\right)}\)
\(=\dfrac{9-3x}{x^2+3x+4}+\dfrac{3x-23}{x^2+3x-4}\)
\(=\dfrac{\left(9-3x\right)\left(x^2+3x-4\right)}{\left(x^2+3x+4\right)\left(x^2+3x-4\right)}+\dfrac{\left(3x-23\right)\left(x^2+3x+4\right)}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{9x^2+27x-36-3x^3-9x^2+12x+3x^3+9x^2+12x-23x^2-69x-92}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
\(=\dfrac{-14x^2-18x-128}{\left(x^2+3x-4\right)\left(x^2+3x+4\right)}\)
b) Ta có: \(\dfrac{4-x}{x^3+2x}-\dfrac{x+5}{x^3-x^2+2x-2}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\dfrac{4-x}{x\left(x^2+2\right)}-\dfrac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\dfrac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{4x-4-x^2+x-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\dfrac{-2}{x\left(x-1\right)}\)
\(a,\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
b,\(\dfrac{x-15}{23}+\dfrac{x-23}{15}-2=0\)
c,\(\dfrac{3\left(2x+1\right)}{4}-\dfrac{5x+3}{6}+\dfrac{x+1}{3}=x+\dfrac{7}{12}\)
a:
\(\dfrac{3\left(2x+1\right)}{4}-5-\dfrac{3x+2}{10}=\dfrac{2\left(3x-1\right)}{5}\)
\(\Leftrightarrow\dfrac{15\left(2x+1\right)-100-2\left(3x+2\right)}{20}=\dfrac{8\left(3x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-100-2\left(3x+2\right)=8\left(3x-1\right)\)
\(\Leftrightarrow30x+15-100-6x+4=24x-8\)\(\Leftrightarrow30x-6x-24x=100-4-8\)
\(\Leftrightarrow0x=88\)
Vậy pt vô nghiệm
b:
\(\dfrac{x-15}{23}+\dfrac{x-23}{15}-2=0\)
\(\Leftrightarrow\dfrac{x-15}{23}+\dfrac{x-23}{15}=2\)
\(\Leftrightarrow\dfrac{x-15}{23}-1+\dfrac{x-23}{15}-1=2-2\)
\(\Leftrightarrow\dfrac{x-15-23}{23}+\dfrac{x-23-15}{15}=0\)
\(\Leftrightarrow\dfrac{x-38}{23}+\dfrac{x-23}{15}=0\)
\(\Leftrightarrow\left(x+38\right)\left(\dfrac{1}{23}+\dfrac{1}{15}\right)=0\)
Vì \(\dfrac{1}{23}+\dfrac{1}{15}\ne0\) nên x + 38 =0 \(\Leftrightarrow x=-38\)
Vậy tập nghiện của pt S= {-38}
c:
\(\dfrac{3\left(2x+1\right)}{4}-\dfrac{5x+3}{6}+\dfrac{x+1}{3}=x+\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\dfrac{12x+7}{12}\)
\(\Leftrightarrow9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)=12x+7\)
\(\Leftrightarrow18x+9-10x-6+4x+4=12x+7\)
\(\Leftrightarrow18x-10x+4x-12x=7-9+6-4\)
\(\Leftrightarrow0x=0\)
Vậy pt vô số nghiệm
tìm x biết
\(\dfrac{7}{9}:\left(2+\dfrac{3}{4}.x\right)+\dfrac{5}{9}=\dfrac{23}{27}\)
|x|\(-\dfrac{3}{4}=\dfrac{5}{3}\)
\(\left|2.x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)
giúp mk vs nhanh lên mình đang bận
b) Ta có: \(\left|x\right|-\dfrac{3}{4}=\dfrac{5}{3}\)
\(\Leftrightarrow\left|x\right|=\dfrac{5}{3}+\dfrac{3}{4}=\dfrac{20}{12}+\dfrac{9}{12}=\dfrac{29}{12}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{12}\\x=-\dfrac{29}{12}\end{matrix}\right.\)
c) Ta có: \(\left|2x-\dfrac{1}{3}\right|+\dfrac{5}{6}=1\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{1}{6}\\2x-\dfrac{1}{3}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{6}+\dfrac{1}{3}=\dfrac{1}{2}\\2x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=\dfrac{1}{12}\end{matrix}\right.\)
Baif 1 : giải phương trình
a. \(\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)
b. \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)\left(\dfrac{x+5}{95}+1\right)\)
c. \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
d. \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
e.\(\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)
f. \(\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)
h. \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
g. \(\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)
h.
\(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1-2=\dfrac{1-x}{2003}+1+1-\dfrac{x}{2004}-2\)
\(\Leftrightarrow\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)
\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
Vì: \(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\ne0\)
Suy ra: 2004 - x = 0
Vậy x = 2004
\(a,\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)
\(\Leftrightarrow\dfrac{x-23}{24}+\dfrac{x-23}{25}-\dfrac{x-23}{26}-\dfrac{x-23}{27}=0\)
\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)
\(\Leftrightarrow x-23=0\) ( vì \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\) )
\(\Leftrightarrow x=23\)
Vậy pt có tập nghiệm S = { 23 }
\(b,\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
\(\Leftrightarrow\dfrac{x+2+98}{98}+\dfrac{x+3+97}{97}-\dfrac{x+4+96}{96}-\dfrac{x+5+95}{95}=0\)
\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy pt có tập nghiệm S = { 100 }
\(c,\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
\(\Leftrightarrow\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
\(\Leftrightarrow\dfrac{x+1+2004}{2004}+\dfrac{x+2+2003}{2003}-\dfrac{x+3+2002}{2002}-\dfrac{x+4+2001}{2001}=0\)
\(\Leftrightarrow\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}-\dfrac{x+2005}{2002}-\dfrac{x+2005}{2001}=0\)
\(\Leftrightarrow\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)=0\)
\(\Leftrightarrow x+2005=0\)
\(\Leftrightarrow x=-2005\)
Vậy pt có tập nghiệm S = { 2005 }
\(d,\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
\(\Leftrightarrow\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}+\dfrac{205-x+95}{95}=0\)
\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\)
\(\Leftrightarrow x=300\)
Vậy pt có tập nghiệm S = { 300 }
\(e,\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)
\(\Leftrightarrow\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)
\(\Leftrightarrow\dfrac{x-45-55}{55}+\dfrac{x-47-53}{53}-\dfrac{x-55-45}{45}-\dfrac{x-53-47}{47}=0\)
\(\Leftrightarrow\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\right)=0\)
\(\Leftrightarrow x-100=0\)
\(\Leftrightarrow x=100\)
Vậy pt có tập nghiệm S = { 100 }
\(f,\dfrac{x+1}{9}+\dfrac{x+2}{8}=\dfrac{x+3}{7}+\dfrac{x+4}{6}\)
\(\Leftrightarrow\dfrac{x+1}{9}+1+\dfrac{x+2}{8}+1=\dfrac{x+3}{7}+1+\dfrac{x+4}{6}+1\)
\(\Leftrightarrow\dfrac{x+10}{9}+\dfrac{x+10}{8}-\dfrac{x+10}{7}-\dfrac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\dfrac{1}{9}+\dfrac{1}{8}-\dfrac{1}{7}-\dfrac{1}{6}\right)=0\)
\(\Leftrightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Vậy pt có tập nghiệm S = { 10 }
\(h,\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)
\(\Leftrightarrow\dfrac{2-x}{2002}=\dfrac{1-x}{2003}+\dfrac{-x}{2004}+1\)
\(\Leftrightarrow\dfrac{2-x}{2002}+1=\dfrac{1-x}{2003}+1+\dfrac{-x}{2004}+1\)
\(\Leftrightarrow\dfrac{2-x+2002}{2002}-\dfrac{1-x+2003}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)
\(\Leftrightarrow\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)
\(\Leftrightarrow2004-x=0\)
\(\Leftrightarrow x=2004\)
Vậy pt có tập nghiệm S = { 2004 }
\(g,\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)
\(\Leftrightarrow\dfrac{x+2}{98}+1+\dfrac{x+4}{96}+1=\dfrac{x+6}{94}+1+\dfrac{x+8}{92}+1\)
\(\Leftrightarrow\dfrac{x+100}{98}+\dfrac{x+100}{96}-\dfrac{x+100}{94}-\dfrac{x+100}{92}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{96}-\dfrac{1}{94}-\dfrac{1}{92}\right)=0\)
\(\Leftrightarrow x+100=0\)
\(\Leftrightarrow x=-100\)
Vậy pt có tập nghiệm S = { -100 }
a.
\(\dfrac{x-23}{24}+\dfrac{x-23}{25}=\dfrac{x-23}{26}+\dfrac{x-23}{27}\)
\(\Leftrightarrow\left(x-23\right)\left(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\right)=0\)
Vì: \(\dfrac{1}{24}+\dfrac{1}{25}-\dfrac{1}{26}-\dfrac{1}{27}\ne0\)
Suy ra x - 23 = 0
\(\Leftrightarrow x=23\)
Tìm x biết:
a, \(\dfrac{3}{5}:x+\dfrac{1}{5}=\dfrac{11}{25}\)
b, \(2\left(x-\dfrac{1}{3}\right)-1\dfrac{2}{3}=\dfrac{-23}{15}\)
c, \(\left|x+1\right|-\dfrac{1}{7}=\dfrac{1}{3}\)
d, \(\dfrac{x+1}{3}=\dfrac{2x-1}{5}\)
a/ => \(\dfrac{3}{5}.\dfrac{1}{x}=\dfrac{6}{25}\)
=> \(\dfrac{1}{x}=\dfrac{2}{5}\)
=> x = 5/2
b/ \(\Rightarrow2\left(x-\dfrac{1}{3}\right)=\dfrac{2}{15}\)
=> \(x-\dfrac{1}{3}=\dfrac{1}{15}\)
=> \(x=\dfrac{2}{5}\)
c/ => | x + 1| = 10/21
=> \(\left[{}\begin{matrix}x=-\dfrac{11}{21}\\x=-\dfrac{31}{21}\end{matrix}\right.\)
d/ => \(5x+5=6x-3\)
=> x = 8