a, \(\dfrac{x-2}{5}=\dfrac{x}{3}\)
\(\Leftrightarrow3\left(x-2\right)=5x\)
\(\Leftrightarrow3x-6=5x\)
\(\Leftrightarrow5x-3x=6\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
b, \(\dfrac{x+23}{x+40}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(x+23\right)=3\left(x+40\right)\)
\(\Leftrightarrow4x+92=2x+80\)
\(\Leftrightarrow4x-2x=80-92\)
\(\Leftrightarrow2x=-12\)
\(\Leftrightarrow x=-6\)
c, \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...........+\dfrac{1}{2^{2017}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...........+\dfrac{1}{2^{2016}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2016}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{2017}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{2017}}\)
d, \(B=1+2+2^2+........+2^{2017}\)
\(\Leftrightarrow2B=2+2^2+2^3+......+2^{2018}\)
\(\Leftrightarrow2B-B=\left(2+2^2+.....+2^{2018}\right)-\left(1+2+....+2^{2017}\right)\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\dfrac{x-2}{5}=\dfrac{x}{3}=>3\left(x-2\right)=5x\)
\(< =>3x-6=5x=>x=-3\)
\(\dfrac{x+23}{x+40}=\dfrac{3}{4}=>4\left(x+23\right)=3\left(x+40\right)\)
\(4x+92=3x+120=>x=28\)