\(5,\dfrac{4}{x-2}+\dfrac{x}{x+1}-\dfrac{x^2-2}{\left(x-2\right)\left(x+1\right)}=0\left(dkxd:x\ne2;-1\right)\)
\(\Rightarrow4\left(x+1\right)+x\left(x-2\right)-x^2-2=0\)
\(\Rightarrow4x+4+x^2-2x-x^2-2=0\)
\(\Rightarrow2x+2=0\)
\(\Rightarrow x=-1\left(loai\right)\)
Vậy \(S=\varnothing\)
\(4,\dfrac{x}{x-3}-\dfrac{1}{x+2}=0\left(dkxd:x\ne3;-2\right)\)
\(\Rightarrow x\left(x+2\right)-\left(x-3\right)=0\)
\(\Rightarrow x^2+3x-x+3=0\)
\(\Rightarrow x^2+2x+3=0\)
\(\Rightarrow S=\varnothing\)
1: \(\Leftrightarrow\left(3x^2+2x+4-x^2+4\right)\left(3x^2+2x+4+x^2-4\right)=0\)
\(\Leftrightarrow\left(2x^2+2x+8\right)\left(4x^2+2x\right)=0\)
=>2x(2x+1)=0
=>x=0 hoặc x=-1/2
2: \(\Leftrightarrow\left(2x^2-3x-4-x^2+x\right)\left(2x^2-3x-4+x^2-x\right)=0\)
=>(x^2-2x-4)(3x^2-4x-4)=0
=>\(x\in\left\{1+\sqrt{5};1-\sqrt{5};2;-\dfrac{2}{3}\right\}\)
5: \(\Leftrightarrow4\cdot\left(x+1\right)+x\left(x-2\right)=x^2-2\)
=>4x+8+x^2-2x=x^2-2
=>2x+8=-2
=>2x=-10
=>x=-5(nhận)