Tìm x :
a, \(\left(2x+\dfrac{1}{2}\right)^2-\left(1-2x\right)^2=0\)
b, \(x.\left(x-2\right)+2-x=0\)
Tìm x, biết :
a/ \(\dfrac{1}{3}x\left(x^2-4\right)=0\)
b/ \(x\left(x+5\right)=x+5\)
c/ \(x^3-\dfrac{1}{9}x=0\)
3)\(^2-\left(x+5\right)^2=0\)
e/ \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
f/ \(x\left(2x-3\right)-6+4x=0\)
g/ \(2\left(3x-2\right)^2-9x^2+4=0\)
h/ \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
i/ \(4x^2+9x+5=0\)
a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)
f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)
i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
a: =>1/3x+2/5x-2/5=0
=>11/15x-2/5=0
=>11/15x=2/5
=>x=2/5:11/15=2/5*15/11=30/55=6/11
b: =>-5x-1-1/2x+1/3=x
=>-11/2x-2/3-x=0
=>-13/2x=2/3
=>x=-2/3:13/2=-2/3*2/13=-4/39
c: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=1/3 hoặc x=-1/2
d: 9(3x+1)^2=16
=>(3x+1)^2=16/9
=>3x+1=4/3 hoặc 3x+1=-4/3
=>3x=1/3 hoặc 3x=-7/3
=>x=1/9 hoặc x=-7/9
tìm x , biết
\(a,\left|2x-3\right|-\left|3x+2\right|=0\\ b,\left|\dfrac{1}{2}x\right|=3-2x\)
a)TH1: \(2x-3>0;3x+2>0\)
\(=>2x-3-3x-2=0\\ =>-x-5=0\\ =>-x=5=>x=-5\)
TH2: \(2x-3< 0;3x+2< 0\)
\(=>-2x+3+3x+2=0\\ =>x+5=0\\ =>x=-5\)
Cả 2 TH ra \(x=-5=>x=-5\)
b)TH1 \(\dfrac{1}{2}x>0\)
\(=>\dfrac{1}{2}x=3-2x\\ =>3-2x-\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x-\dfrac{1}{2}x=3\\ =>\dfrac{3}{2}x=3\\ =>x=2\)
TH2 \(\dfrac{1}{2}x< 0\)
\(=>-\dfrac{1}{2}x=3-2x\\ =>3-2x+\dfrac{1}{2}x=0\\ =>\dfrac{4}{2}x+\dfrac{1}{2}x=3\\ =>\dfrac{5}{2}x=3\\ =>x=\dfrac{6}{5}\)
\(=>x=2;\dfrac{6}{5}\)
tìm x biết :
a) \(\left|x+\dfrac{1}{2}\right|\)=\(\dfrac{5}{2}\) b) \(\left|2x-\dfrac{2}{3}\right|\)+\(\dfrac{1}{3}\)=0 c) |x-2| = 2x + 1
\(\left[{}\begin{matrix}2x-\dfrac{2}{3}=\dfrac{1}{3}\\2x-\dfrac{2}{3}=\dfrac{-1}{3}\end{matrix}\right.\left[{}\begin{matrix}2x=1\\2x=\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{6}\end{matrix}\right.\)
a)\(\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c)\(\left[{}\begin{matrix}x-2=2x-1\\-x+2=2x-1\end{matrix}\right.\left[{}\begin{matrix}x-2=2x-1\\-x+2=2x-1\end{matrix}\right.\left[{}\begin{matrix}x-2x=-1+2\\-x-2x=-1-2\end{matrix}\right.\left[{}\begin{matrix}-1x=1\\-3x=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=1:\left(-1\right)\\x=-3:\left(-3\right)\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
Tìm x biết:
\(a,3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\)
\(b,\dfrac{1}{3}+\dfrac{2}{3}:x=-7\)
\(c,\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(d,\left(2x-3\right)\left(6-2x\right)=0\)
\(e,x:\dfrac{3}{4}+\dfrac{1}{4}=-\dfrac{2}{3}\)
\(f,\dfrac{-2}{3}-\dfrac{1}{3}\left(2x-5\right)=\dfrac{3}{2}\)
\(g,2\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\)
\(h,\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(i,\left(-0,6x-\dfrac{1}{2}\right).\dfrac{3}{4}-\left(-1\right)=\dfrac{1}{3}\)
\(j,\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(k,\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(l,\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(m,3\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\)
\(n,60\%x+\dfrac{2}{3}x=\dfrac{1}{3}.6\dfrac{1}{3}\)
\(p,-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(q,3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
a) \(x\left(x+4\right)-4x+1=0\)
b) \(2\left(x-3\right)+4=2x+2\)
c) \(\dfrac{x+3}{2}-\dfrac{2x+1}{4}=\dfrac{1}{4}\)
d) \(\dfrac{x^2+3x}{x+3}+3=0\)
e) \(x^2-3x\left(x-1\right)-3x-2=0\)
a: =>x^2+4x-4x+1=0
=>x^2+1=0
=>Loại
b: =>2x-6+4=2x+2
=>-2=2(loại)
c: =>2(x+3)-2x-1=1
=>6-1=1
=>5=1(loại)
d =>x+3=0
=>x=-3(loại)
e: =>x^2-3x^2+3x-3x-2=0
=>-2x^2-2=0
=>x^2+1=0
=>Loại
Tìm x,biết
a)\(\left(x-2^2\right)-1=0\)
b)\(4-\left(x-2\right)^2=0\)
c)\(x^2-9-\dfrac{8}{9}x^2=0\)
d)\(\left(3x-2\right)^2-\left(2x+3\right)^2=5\left(x+4\right)\left(x-4\right)\)
a. (x - 22) - 1 = 0
<=> x - 4 - 1 = 0
<=> x = 5
b. 4 - (x - 2)2 = 0
<=> 22 - (x - 2)2 = 0
<=> (2 - x + 2)(2 + x - 2) = 0
<=> x(4 - x) = 0
<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)
<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)
<=> (x - 5)(5x + 1) = 5x2 - 80
<=> 5x2 + x - 25x - 5 = 5x2 - 80
<=> 5x2 - 5x2 + x - 25x = -80 + 5
<=> -24x = -75
<=> x = \(\dfrac{25}{8}\)
a)\(\left(x-2^2\right)-1=0\Rightarrow x-4-1=0\Rightarrow x=5\)
Bài 2: Tìm x,y,z biết:
a)\(\left(x-1\right)\)\(:\)\(\dfrac{2}{3}\)=\(\dfrac{-2}{5}\)
b) \(\left|x-\dfrac{1}{2}\right|-\dfrac{1}{3}=0\)
c) \(\left|4x+2\right|=\left|6+2x\right|\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
Giải các phương trình sau:
1, \(\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\)
2, \(\left(x-2\right)\left(2x-1\right)=x^2-2x\)
3, \(3x^2-4x+1=0\)
4, \(\left|2x-4\right|=0\)
5, \(\left|3x+2\right|=4\)
6, \(\left|2x-5\right|=\left|-x+2\right|\)
*Giúp mình với mình đg cần gấp ạ T_T
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
bài 1: phân tích đa thức thành nhân tử
a,2x+10y
b,x\(^2+4x+4\)
c,\(x^2-y^2+10y-25\)
bài 2 tìm x, biết
a,\(x^2-3x+x-3=0\)
b,\(2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\)
c,\(x^2-\left(x-3\right)\left(2x-5\right)=9\)
\(B1\\ a,2x+10y=2\left(x+5y\right)\\ b,x^2+4x+4=x^2+2.2x+2^2=\left(x+2\right)^2\\ c,x^2-y^2+10y-25\\ =\left(x^2-y^2\right)+5\left(2y-5\right)\\ =\left(x-y\right)\left(x+y\right)+5\left(2y-5\right)\\ B2\)
\(a,x^2-3x+x-3=0\\ =>x\left(x-3\right)+\left(x-3\right)=0\\ =>\left(x+1\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ b,2x\left(x-3\right)-\dfrac{1}{2}\left(4x^2-3\right)=0\\ =>2x^2-6x-2x^2+\dfrac{3}{2}=0\\ =>-6x=-\dfrac{3}{2}\\ =>x=\left(-\dfrac{3}{2}\right):\left(-6\right)\\ =>x=\dfrac{1}{4}\\ c,x^2-\left(x-3\right)\left(2x-5\right)=9\\ =>x^2-2x^2+6x+5x-15=9\\ =>-x^2+11-15-9=0\\ =>-x^2+11x-24=0\\ =>-x^2+8x+3x-24=0\\ =>-x\left(x-8\right)+3\left(x-8\right)=0\\ =>\left(3-x\right)\left(x-8\right)=0\\ =>\left[{}\begin{matrix}3-x=0\\x-8=0\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)