Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Ngọc Quý
Xem chi tiết
Lê Gia Bảo
1 tháng 12 2019 lúc 8:54

Đặt \(\sqrt[3]{2\sqrt{14}-8}.\sqrt[3]{2\sqrt{14}-8}=\sqrt[3]{\left(2\sqrt{14}-8\right)\left(2\sqrt{14}+8\right)}=\sqrt[3]{56-64}\)

\(\sqrt[3]{-8}=-2\)

Khách vãng lai đã xóa
Akai Haruma
1 tháng 12 2019 lúc 9:02

Lời giải:

\(\sqrt[3]{2\sqrt{14}-8}.\sqrt[3]{2\sqrt{14}+8}=\sqrt[3]{(2\sqrt{14}-8)(2\sqrt{14}+8)}\)

\(=\sqrt[3]{(2\sqrt{14})^2-8^2}=\sqrt[3]{-8}=-2\)

Khách vãng lai đã xóa
manh
Xem chi tiết
HT.Phong (9A5)
14 tháng 8 2023 lúc 9:24

\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\sqrt{3}+2\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\)

\(=\dfrac{\sqrt{2}}{2}\)

___________

\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}+\sqrt{8}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

__________

\(\dfrac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)

\(=\dfrac{3\cdot2\sqrt{2}-2\cdot2\sqrt{3}+2\sqrt{5}}{3\cdot3\sqrt{2}-2\cdot3\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\dfrac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}\)

\(=\dfrac{2}{3}\)

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 9:17

a: \(=\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\dfrac{\sqrt{2}}{2}\)

b: \(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)

c: \(=\dfrac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\dfrac{2}{3}\)

duc99duc
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 10 2021 lúc 19:39

\(=\sqrt{\dfrac{\sqrt{5}}{\sqrt{5}\left(8+3\sqrt{7}\right)}}\cdot\sqrt{2}\left(3+\sqrt{7}\right)\\ =\sqrt{\dfrac{2\left(3+\sqrt{7}\right)^2}{8+3\sqrt{7}}}=\sqrt{\dfrac{32+12\sqrt{7}}{8+3\sqrt{7}}}\\ =\sqrt{\dfrac{4\left(8+3\sqrt{7}\right)}{8+3\sqrt{7}}}=\sqrt{4}=2\)

32_nguyễn_công_lộc
Xem chi tiết
Hquynh
8 tháng 1 2023 lúc 19:28

\(=\left(3\sqrt{2}-2\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =\left(\sqrt{2}+\sqrt{14}\right).\sqrt{2}-\sqrt{7}\\ =2+2\sqrt{7}-\sqrt{7}\\ =2+\sqrt{7}\)

Bao Gia
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 16:06

\(\sqrt{12-6\sqrt{3}}=\sqrt{9-6\sqrt{3}+3}=\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(3-\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)

\(\sqrt{19+8\sqrt{3}}=\sqrt{16+8\sqrt{3}+3}=\sqrt{4^2+2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(4+\sqrt{3}\right)^2}\)

\(=\left|4+\sqrt{3}\right|=4+\sqrt{3}\)

\(\sqrt{14-6\sqrt{5}}=\sqrt{9-6\sqrt{5}+5}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)

An Thy
12 tháng 7 2021 lúc 16:06

\(\sqrt{12-6\sqrt{3}}=\sqrt{3^2-2.3.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)

\(\sqrt{19+8\sqrt{3}}=\sqrt{4^2+2.4.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(4+\sqrt{3}\right)^2}=\left|4+\sqrt{3}\right|=4+\sqrt{3}\)

\(\sqrt{14-6\sqrt{5}}=\sqrt{3^2-2.3.\sqrt{5}+\left(\sqrt{5}\right)^2}=\sqrt{\left(3-\sqrt{5}\right)^2}=\left|3-\sqrt{5}\right|=3-\sqrt{5}\)

Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 23:55

\(\sqrt{12-6\sqrt{3}}=3-\sqrt{3}\)

\(\sqrt{19+8\sqrt{3}}=4+\sqrt{3}\)

\(\sqrt{14-6\sqrt{5}}=3-\sqrt{5}\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 21:59

a/ ĐKXĐ: \(x\ge1\)

Khi \(x\ge1\) ta thấy \(\left\{{}\begin{matrix}VT>0\\VP=1-x\le0\end{matrix}\right.\) nên pt vô nghiệm

b/ \(x\ge1\)

\(\sqrt{\sqrt{x-1}\left(x-2\sqrt{x-1}\right)}+\sqrt{\sqrt{x-1}\left(x+3-4\sqrt{x-1}\right)}=\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-1\right)^2}+\sqrt{\sqrt{x-1}\left(\sqrt{x-1}-2\right)^2}=\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=a\ge0\) ta được:

\(\sqrt{a\left(a-1\right)^2}+\sqrt{a\left(a-2\right)^2}=a\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\Rightarrow x=1\\\sqrt{\left(a-1\right)^2}+\sqrt{\left(a-2\right)^2}=\sqrt{a}\left(1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left|a-1\right|+\left|a-2\right|=\sqrt{a}\)

- Với \(a\ge2\) ta được: \(2a-3=\sqrt{a}\Leftrightarrow2a-\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}\sqrt{a}=-1\left(l\right)\\\sqrt{a}=\frac{3}{2}\end{matrix}\right.\)

\(\Rightarrow a=\frac{9}{4}\Rightarrow\sqrt{x-1}=\frac{9}{4}\Rightarrow...\)

- Với \(0\le a\le1\) ta được:

\(1-a+2-a=\sqrt{a}\Leftrightarrow2a+\sqrt{a}-3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x-1}=1\Rightarrow...\)

- Với \(1< a< 2\Rightarrow a-1+2-a=\sqrt{a}\Leftrightarrow a=1\left(l\right)\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:03

c/ ĐKXĐ: \(x\ge\frac{49}{14}\)

\(\Leftrightarrow\sqrt{14x-49+14\sqrt{14x-49}+49}+\sqrt{14x-49-14\sqrt{14x-49}+49}=14\)

\(\Leftrightarrow\sqrt{\left(\sqrt{14x-49}+7\right)^2}+\sqrt{\left(\sqrt{14x-49}-7\right)^2}=14\)

\(\Leftrightarrow\left|\sqrt{14x-49}+7\right|+\left|7-\sqrt{14x-49}\right|=14\)

\(VT\ge\left|\sqrt{14x-49}+7+7-\sqrt{14x-49}\right|=14\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(7-\sqrt{14x-49}\ge0\)

\(\Leftrightarrow14x-49\le49\Leftrightarrow x\le7\)

Vậy nghiệm của pt là \(\frac{49}{14}\le x\le7\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 22:13

d/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-1}-1\right)^2}-2\sqrt{\left(\sqrt{2x-1}-2\right)^2}+3\sqrt{\left(\sqrt{2x-1}-3\right)^2}=4\)

\(\Leftrightarrow\left|\sqrt{2x-1}-1\right|-2\left|\sqrt{2x-1}-2\right|+3\left|\sqrt{2x-1}-3\right|=4\)

TH1: \(\sqrt{2x-1}\ge3\Rightarrow x\ge5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\sqrt{2x-1}-9=4\)

\(\Leftrightarrow\sqrt{2x-1}=5\)

\(\Leftrightarrow x=13\)

TH2: \(2\le\sqrt{2x-1}< 3\Rightarrow\frac{5}{2}\le x< 5\)

\(\sqrt{2x-1}-1-2\sqrt{2x-1}+4+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=2\Rightarrow x=\frac{5}{2}\)

TH3: \(1\le\sqrt{2x-1}< 2\Rightarrow1\le x< \frac{5}{2}\)

\(\sqrt{2x-1}-1-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow4=4\) (luôn đúng)

TH4: \(\frac{1}{2}\le x< 1\)

\(1-\sqrt{2x-1}-2\left(2-\sqrt{2x-1}\right)+3\left(3-\sqrt{2x-1}\right)=4\)

\(\Leftrightarrow\sqrt{2x-1}=1\Rightarrow x=1\left(l\right)\)

Vậy nghiệm của pt là: \(\left[{}\begin{matrix}1\le x\le\frac{5}{2}\\x=13\end{matrix}\right.\)

Khách vãng lai đã xóa
Ko cần bít
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Nguyễn Linh Chi
27 tháng 8 2020 lúc 10:26

Đặt y = \(x+1=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}\)

=> \(y^3=8+2\sqrt{14}+8-2\sqrt{14}+3\sqrt[3]{\left(8+2\sqrt{14}\right)\left(8-2\sqrt{14}\right)}.y\)

<=> \(y^3=16+6y\)

=> \(\left(x+1\right)^3=16+6\left(x+1\right)\)

=> \(x^3+3x^2+3x+1=6x+32\)

<=> \(x^3+3x^2-3x-5=26\)

Ta có: 

\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)

\(x^6+3x^5-3x^4-5x^3+3x^3+9x^2-9x-15+2033\)

\(\left(x^3+3x^2-3x-5\right)\left(x^3+3\right)+2033\)

\(26x^3+2111\)

\(=26\left(\sqrt[8]{8+2\sqrt{14}}+\sqrt[8]{8-2\sqrt{14}}-1\right)^3+2033\)

Khách vãng lai đã xóa
Bao Gia
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 20:38

a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)

\(=\sqrt{2}-1-3-\sqrt{2}\)

=-4

b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)

\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)

\(=3\sqrt{3}+1\)

c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)

\(=3\sqrt{5}-6\)

d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)

\(=\sqrt{7}-2+4-\sqrt{7}+8\)

=10

Emily Nain
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 17:15

a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\)

b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\sqrt{2}\left(1+\sqrt{3}+\sqrt{7}+\sqrt{21}\right)\)

\(=\sqrt{2}\left(1+\sqrt{3}\right)\left(1+\sqrt{7}\right)\)

c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{6}}{2}\)

Ricky Kiddo
2 tháng 7 2021 lúc 17:15

a) \(3\sqrt{2}-2\sqrt{3}=\sqrt{3}.\sqrt{3}.\sqrt{2}-\sqrt{2}.\sqrt{2}.\sqrt{3}=\left(\sqrt{3}-\sqrt{2}\right).\sqrt{6}\)

b) \(\sqrt{2}+\sqrt{6}+\sqrt{14}+\sqrt{42}=\left(\sqrt{3}+1\right)\sqrt{2}+\sqrt{14}\left(\sqrt{3}+1\right)=\sqrt{2}\left(\sqrt{7}+1\right)\left(\sqrt{3}+1\right)\)

c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}=\dfrac{\sqrt{3}\left(2-\sqrt{2}\right)}{\sqrt{2}\left(2-\sqrt{2}\right)}=\dfrac{\sqrt{3}}{\sqrt{2}}=\sqrt{\dfrac{9}{4}}\)