Tìm \(x\in Q,\) \(biết:\)
\((x-\dfrac{1}{8})^3=\dfrac{27}{64}\)
\(\dfrac{1}{27}+a^3\\ 8x^3+27y^3\\ \dfrac{1}{8}x^3+8y^3\\ x^6+1\\ x^9+1\\ x^3-64\\ x^3-125\\ 8x^6-27y^3\\ \dfrac{1}{64}x^6-125y^3\\ \dfrac{1}{8}x^3-8\\ x^3+6x^2+12x+8\\ x^3+9x^2+27x+27\) Giúp mình với mình cần gấp ;-;
1) \(\dfrac{1}{27}+a^3=\left(\dfrac{1}{3}+a\right)\left(\dfrac{1}{9}-\dfrac{a}{3}+a^2\right)\)
2) \(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
3) \(=\left(\dfrac{1}{2}x+2y\right)\left(\dfrac{1}{4}x-xy+4y^2\right)\)
4) \(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
5) \(=\left(x^3+1\right)\left(x^6-x^3+1\right)\)
6) \(=\left(x-4\right)\left(x^2+4x+16\right)\)
7) \(=\left(x-5\right)\left(x^2+5x+25\right)\)
8) \(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
9) \(=\left(\dfrac{1}{4}x^2-5y\right)\left(\dfrac{1}{16}x^4+\dfrac{5}{4}x^2y+25y^2\right)\)
10) \(=\left(\dfrac{1}{2}x-2\right)\left(\dfrac{1}{4}x^2+x+4\right)\)
11) \(=\left(x+2\right)^3\)
12) \(=\left(x+3\right)^3\)
tìm x ∈ Q biết : \(\dfrac{3\left(x+1\right)}{2}\)=\(\dfrac{8}{27\left(x-1\right)}\)
Tìm hai số x,y biết
a/\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2-3z^2=-650\)
b/\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6};5z-3x-4y=50\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x-4y+5z+3-12-25}{-3\cdot2-4\cdot4+5\cdot6}=\dfrac{16}{8}=2\)
Do đó: x=5; y=5; z=17
\(a,\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}=\dfrac{x^2+2y^2-3z^2}{4+18-48}=\dfrac{-650}{-26}=25\\ \Rightarrow\left\{{}\begin{matrix}x^2=100\\y^2=225\\z^2=400\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm10\\y=\pm15\\z=\pm20\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)\) có giá trị là hoán vị của \(\left(\pm10;\pm15;\pm20\right)\)
\(\left(3-x\right)^3=-\dfrac{27}{64};\left(x-5\right)^3=\dfrac{1}{-27};\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8};\left(2x-1\right)^2=\dfrac{1}{4};\left(2-3x\right)^2=\dfrac{9}{4};\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\left(3-x\right)^3=-\dfrac{27}{64}\)
\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)
\(=>3-x=\dfrac{-3}{4}\)
\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)
\(x=\dfrac{15}{4}\)
________
\(\left(x-5\right)^3=\dfrac{1}{-27}\)
\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)
\(=>x-5=\dfrac{-1}{3}\)
\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)
\(x=\dfrac{14}{3}\)
_____________
\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)
\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)
\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}+\dfrac{1}{2}\)
\(x=2\)
________
\(\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\) hoặc \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(=>2x-1=\dfrac{1}{2}\) \(2x-1=\dfrac{-1}{2}\)
\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\) \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)
\(2x=\dfrac{3}{2}\) \(2x=\dfrac{1}{2}\)
\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\) \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)
\(x=\dfrac{3}{4}\) \(x=\dfrac{1}{4}\)
____________
\(\left(2-3x\right)^2=\dfrac{9}{4}\)
\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\) hoặc \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)
\(=>2-3x=\dfrac{3}{2}\) \(2-3x=\dfrac{-3}{2}\)
\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\) \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)
\(3x=\dfrac{1}{2}\) \(3x=\dfrac{7}{2}\)
\(x=\dfrac{1}{2}.\dfrac{1}{3}\) \(x=\dfrac{7}{2}.\dfrac{1}{3}\)
\(x=\dfrac{1}{6}\) \(x=\dfrac{7}{6}\)
______________
\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này
(3-x)3=(-\(\dfrac{3}{4}\))3
3-x=-\(\dfrac{3}{4}\)
x=3-(-\(\dfrac{3}{4}\))
x=\(\dfrac{15}{4}\)
Tìm x,y,z biết\(\dfrac{x^2}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64};x^2+2y^2+3z^2=-650\). Nhớ giải đầy đủ nha.
Sửa đề: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\) và \(x^2+2y^3+3z^3=630\)
Có:\(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Rightarrow\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}\) và \(x^2+2y^2+3z^2=630\)
Áp dụng t/c của dãy tỉ số bằng nhau có:
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}=\dfrac{x^2+2y^2+3z^2}{70}=\dfrac{630}{70}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=\dfrac{9\cdot18}{2}=81\\z^2=\dfrac{9\cdot48}{3}=144\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=9\\y=-9\end{matrix}\right.\\\left[{}\begin{matrix}z=12\\z=-12\end{matrix}\right.\end{matrix}\right.\)
Vậy ....................
P/s: Chỗ -650 sửa thành 630 vì \(x^2+2y^2+3z^2\ge0\) nên = -650 rất vô lí --> mk sửa với lại sửa thành 630 thì kq đẹp hơn :))
~ Nếu mà đề bạn đúng thì thay số vào là đc nhé ~
Tìm x biết : A = \(\dfrac{\left(x+3\right)^5}{\left(x+2\right)^2}=\dfrac{64}{27}\)
B = \(\dfrac{x-1}{x+5}=\dfrac{6}{7}\)
BIến đổi các biểu thức sau thành tích các đa thức:
a) \(x^3+8\)
b) \(64.x^3-\dfrac{1}{8}.y^3.125.x^6-27.y^9\)
c) \(-\dfrac{x^6}{125}-\dfrac{y^3}{64}\)
a, \(x^3+8=x^3+2x^2-2x^2-4x+4x+8\)
\(=x^2.\left(x+2\right)-2x.\left(x+2\right)+4.\left(x+2\right)\)
\(=\left(x+2\right).\left(x^2-2x+4\right)\)
c) \(-\dfrac{x^6}{125}-\dfrac{y^3}{64}\)
\(=-\left(\dfrac{x^6}{125}+\dfrac{y^3}{64}\right)\)
\(=-\left(\dfrac{x^2}{5}+\dfrac{y^4}{4}\right)\left(\dfrac{x^4}{25}-\dfrac{x^2y}{20}+\dfrac{y^2}{16}\right)\)
Tìm x, biết \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
1. Tìm x:
a. |x| = 5,6 b. |x-3,5| = 5 c.|x+\(\dfrac{3}{4}\)| - \(\dfrac{1}{2}\)= 0 d. |4x| -|-13,5| = |\(\dfrac{9}{4}\)|
e. (x-1)3 = 27 f. (2x-3)2=36 g. 5x + 2= 625 h. (2x -1) 3 = -8
i.* \(\dfrac{1}{4}\).\(\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
a.
| x | = 5,6
=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)
Vậy \(x\in\left\{-5,6;5,6\right\}\)
b, \(\left|x-3,5\right|=5\)
=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)
Vậy \(x\in\left\{-1,5;8,5\right\}\)
c,\(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=> \(\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{4};\dfrac{5}{4}\right\}\)
d,\(\left|4x\right|-\left(\left|-13,5\right|\right)=\left|\dfrac{1}{4}\right|\)
=> \(\left|4x\right|-13,5=\dfrac{1}{4}\)
=> \(\left|4x\right|=13,75\)
=>\(\left[{}\begin{matrix}4x=13,75\\4x=-13,75\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3,4375\\x=-3,4375\end{matrix}\right.\)
Vậy \(x\in\left\{-3,4375;3,4375\right\}\)
e, ( x - 1 ) 3 = 27
=> x - 1 = 3
=> x = 4
Vậy x = 4
f, ( 2x - 3)2 = 36
=> \(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=4,5\\x=-1,5\end{matrix}\right.\)
Vậy x\(\in\left\{-1,5;4,5\right\}\)
g, \(5^{x+2}=625\)
=> \(5^{x+2}=5^4\)
=> x + 2 = 4
=> x = 2
Vậy x = 2
h, ( 2x - 1)3 = -8
=> 2x - 1 = -2
=> x = \(\dfrac{-1}{2}\)
Vậy x = \(\dfrac{-1}{2}\)
i, \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=> \(\dfrac{1.2.3.4.5...30.31}{4.6.8.10.12...62.64}=2^x\)
=>\(\dfrac{1.2.3.4.5...30.31}{\left(2.3.4.5...30.31.32\right)\left(2.2.2.2...2.2_{ }\right)}=2^x\)(có 31 số 2)
=> \(\dfrac{1}{32.2^{31}}=2^x\)
=> \(\dfrac{1}{2^{36}}=2^x\)
=> x = -36
Vậy x = -36