Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Subs Mustafa
Xem chi tiết
Akai Haruma
5 tháng 4 2018 lúc 16:52

Lời giải:

ĐKXĐ: \(x\neq -3; x\neq \pm 6; x\neq 0\)

Ta có:

\(A=\left(\frac{x}{x^2-36}-\frac{x+6}{x^2-6x}\right): \frac{2x+6}{x^2-6x}-\frac{x}{x+6}\)

\(A=\left(\frac{x}{x^2-36}-\frac{x+6}{x^2-6x}\right).\frac{x^2-6x}{2x+6}-\frac{x}{x+6}\)

\(=\frac{x(x^2-6x)}{(x^2-36)(2x+6)}-\frac{(x+6)(x^2-6x)}{x^2-6x)(2x+6)}-\frac{x}{x+6}\)

\(=\frac{x^2(x-6)}{(x-6)(x+6)(2x+6)}-\frac{x+6}{2x+6}-\frac{x}{x+6}\)

\(=\frac{x^2}{(x+6)(2x+6)}-\frac{(x+6)^2}{(2x+6)(x+6)}-\frac{x(2x+6)}{(2x+6)(x+6)}\)

\(=\frac{x^2-(x+6)^2-x(2x+6)}{(x+6)(2x+6)}=\frac{-(2x^2+18x+36)}{2x^2+18x+36}=-1\)

Nguyễn Thanh Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 6 2022 lúc 19:27

\(A=\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}-\dfrac{x}{x-6}\)

\(=\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(=\dfrac{12\left(x-3\right)}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(=\dfrac{12}{2\left(x-6\right)}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)

Minh Khánh
Xem chi tiết
Minh Cao
27 tháng 12 2020 lúc 15:05

a, \(\dfrac{x^2-49}{x-7}\) + x - 2 = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x - 2 = x + 7 + x - 2 = 2x + 5

b, \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right)\) . \(\dfrac{x^2+6x}{2x-6}\) 

\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)

\(\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)

\(\left(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)

\(\dfrac{6}{x-6}\)

 

 

 

Bùi Thảo Vy
27 tháng 12 2020 lúc 15:12

1. = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x-2

    = x+7 +x-2

    = 2x-5

2.  = (\(\dfrac{x}{\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{x-6}{x\left(x+6\right)}\) ) \(^{\dfrac{x^2+6x}{2x-6}}\)

     = ( \(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\) ) \(\dfrac{x^2+6x}{2x-6}\) 

     = \(\dfrac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\)  . \(\dfrac{x^2+6x}{2x-6}\)

     = \(\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\) .  \(\dfrac{x^2+6x}{2x-6}\)

     = \(\dfrac{12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)

     = \(\dfrac{12\left(x-3\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)2\left(x-3\right)}\)

     = \(\dfrac{6}{x-6}\)

Chúc bạn học tốt!

Đỗ Linh Chi
Xem chi tiết
huỳnh thị ngọc ngân
3 tháng 6 2017 lúc 11:40

a) rút gọn

\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

= \(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

=\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right):\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)

=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)

= \(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x-6\right)\left(x+6\right)}{\left(2x-6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)

= \(\dfrac{6}{x-6}+\dfrac{-x}{-\left(6-x\right)}\)

= \(\dfrac{6}{x-6}+\dfrac{-x}{x-6}=\dfrac{6-x}{x-6}=-1\)

b)

Tìm x để giá trị của S = -1

Với mọi x khác 6 thì giá trị của S = -1

huỳnh thị ngọc ngân
3 tháng 6 2017 lúc 13:00

b)

Vì giá trị của biểu thức đã được xác định nên giá trị của

S = -1 không phụ thuộc vào giá trị của biến x.

N cn
Xem chi tiết
Alan Walker
26 tháng 12 2017 lúc 22:11

a)S=\(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

=\(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{2\left(x-3\right)}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

=\(\dfrac{6\left(2x-6\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(2x-6\right)}+\dfrac{x}{6-x}\)

=\(\dfrac{6}{x-6}+\dfrac{x}{6-x}\)

=\(\dfrac{6}{x-6}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)

b ) S khi rút gọn=-1 => mọi giá trị của x đều thỏa mãn S=-1

Kim Tuyến
Xem chi tiết
Khánh Huyền
9 tháng 6 2021 lúc 9:06

a)

\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

\(S=\left(\dfrac{x}{\left(x+6\right)\left(x-6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\left(\dfrac{x^2-x^2+12x-36}{x\left(x+6\right)\left(x-6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\dfrac{12\left(x-3\right)}{x\left(x+6\right)\left(x-6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(S=\dfrac{6}{x-6}-\dfrac{x}{x-6}\)

\(S=\dfrac{6-x}{x-6}=-1\)

b) Vì giá trị của biểu thức S không phụ thuộc vào giá trị của biến nên với mọi giá trị của x ta đều có giá trị của S là - 1.

 

Khánh Linh Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2023 lúc 21:46

6:

a: ĐKXĐ: x<>0

\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)

\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)

b: ĐKXĐ: x<>1

\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)

\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)

c: ĐKXĐ: x<>-2

\(\dfrac{x^2+4x+4}{2x+4}\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

d: ĐKXĐ: x<>-2

\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)

\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)

e: ĐKXĐ: x<>-y

\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)

g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)

\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)

7:

a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)

\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)

b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)

\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)

c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)

\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)

d:

\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)

\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
19 tháng 9 2023 lúc 1:01

a) 4x2(5x2 + 3) – 6x(3x3 – 2x + 1) – 5x3 (2x – 1)

= 4x2 . 5x2 + 4x2 . 3 – [6x . 3x3 + 6x . (-2x) + 6x . 1] – [5x3 . 2x + 5x3 . (-1)]

= 20x4 + 12x2 – (18x4 – 12x2 + 6x) – (10x4 – 5x3)

= 20x4 + 12x2 - 18x4 + 12x2 - 6x - 10x4 + 5x3

= (20x4 – 18x4 - 10x4 ) + 5x3 + (12x2 + 12x2 ) – 6x

= -8x4 + 5x3 + 24x2 – 6x

\(\begin{array}{l}b)\dfrac{3}{2}x\left( {{x^2} - \dfrac{2}{3}x + 2} \right) - \dfrac{5}{3}{x^2}(x + \dfrac{6}{5})\\ = \dfrac{3}{2}x.{x^2} + \dfrac{3}{2}x.( - \dfrac{2}{3}x) + \dfrac{3}{2}x.2 - (\dfrac{5}{3}{x^2}.x + \dfrac{5}{3}{x^2}.\dfrac{6}{5})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - (\dfrac{5}{3}{x^3} + 2{x^2})\\ = \dfrac{3}{2}{x^3} - {x^2} + 3x - \dfrac{5}{3}{x^3} - 2{x^2}\\ = (\dfrac{3}{2}{x^3} - \dfrac{5}{3}{x^3}) + ( - {x^2} - 2{x^2}) + 3x\\ = \dfrac{{ - 1}}{6}{x^3} - 3{x^2} + 3x\end{array}\)

Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 22:29

a) Ta có: \(\dfrac{x}{x-3}-\dfrac{6}{x}-\dfrac{9}{x^2-3x}\)

\(=\dfrac{x^2}{x\left(x-3\right)}-\dfrac{6\left(x-3\right)}{x\left(x-3\right)}-\dfrac{9}{x\left(x-3\right)}\)

\(=\dfrac{x^2-6x+18-9}{x\left(x-3\right)}\)

\(=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

b) Ta có: \(\dfrac{7}{x}-\dfrac{x}{x+6}+\dfrac{36}{x^2+6x}\)

\(=\dfrac{7\left(x+6\right)-x^2+36}{x\left(x+6\right)}\)

\(=\dfrac{7x+42-x^2+36}{x\left(x+6\right)}\)

\(=\dfrac{-\left(x^2-7x-78\right)}{x\left(x+6\right)}\)

\(=\dfrac{-\left(x^2-13x+6x-78\right)}{x\left(x+6\right)}\)

\(=\dfrac{-\left[x\left(x-13\right)+6\left(x-13\right)\right]}{x\left(x+6\right)}\)

\(=\dfrac{13-x}{x}\)

c) Ta có: \(\dfrac{6}{x-3}-\dfrac{2x-6}{x^2-9}-\dfrac{4}{x+3}\)

\(=\dfrac{6\left(x+3\right)-2x+6-4\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{6x+18-2x+6-4x+12}{\left(x-3\right)\left(x+3\right)}=\dfrac{36}{\left(x-3\right)\left(x+3\right)}\)