Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đạm Đoàn
Xem chi tiết
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:58

a.

ĐKXĐ: \(x\ge3\)

(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó

Pt tương đương:

\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)

Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)

\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)

Pt vô nghiệm

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 12:58

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)

Đặt \(\sqrt{2x+3}=t\ge0\) ta được:

\(t^2-t-\left(4x^2-6x+2\right)=0\)

\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:04

c.

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow2\left(x^2-4x+4\right)+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)

\(\Leftrightarrow2\left(x-2\right)^2-5\left(x-2\right)\sqrt{x+1}+2\left(x+1\right)=0\)

Đặt \(\left\{{}\begin{matrix}x-2=a\\\sqrt{x+1}=b\end{matrix}\right.\) ta được:

\(2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=x-2\left(x\ge2\right)\\\sqrt{x+1}=2x-4\left(x\ge2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+4=x^2-4x+4\\x+1=4x^2-16x+16\end{matrix}\right.\) (\(x\ge2\))

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\) (đã loại nghiệm)

nguyen ngoc khanh linh
Xem chi tiết
tth_new
30 tháng 8 2019 lúc 9:13

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

tth_new
30 tháng 8 2019 lúc 9:14

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<

Nyatmax
30 tháng 8 2019 lúc 12:15

a.\(DK:x\in R,1\le y\le5\)

.\(\Leftrightarrow\sqrt{4-\left(3-y\right)^2}-\sqrt{\left(x-3\right)^2+1}=1\)

Ta co:\(\sqrt{4-\left(3-y\right)^2}\le2\left(1\right)\)

          \(\sqrt{\left(x-3\right)^2+1}\ge1\left(1\right)\)

Tru ve voi ve cua (1) va (2) ta duoc:

\(\sqrt{4-\left(3-y\right)^2}-\sqrt{\left(x-3\right)^2+1}\le1\)

Dau '=' xay ra khi \(x=y=3\)

Vay nghiem cua PT la \(x=y=3\)

Đinh Đức Thọ
Xem chi tiết
alibaba nguyễn
10 tháng 9 2016 lúc 22:05

Nó có 1 nghiệm là 9

Bạn chứng minh nó là nghiệm duy nhất đi

aqz123456
11 tháng 9 2016 lúc 13:59

1 nghiệm ls 9

Nguyễn Phương Thảo
Xem chi tiết

ĐK: \(x\ge-1\)

\(PT\Leftrightarrow2\left(x-2\right)^2+2\left(x+1\right)-5\left(x-2\right)\sqrt{x+1}=0\)

Đặt \(x-2=a,\sqrt{x+1}=b\left(a\ge-3,b\ge0\right)\)

\(PT\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}\)

Đến đây dễ r nhé :P

Khách vãng lai đã xóa
Lê Hương Giang
Xem chi tiết
Tử Nguyệt Hàn
24 tháng 8 2021 lúc 18:05

\(\sqrt{x^{ }2-6x+9}=4-x\)
\(\sqrt{\left(x-3\right)^{ }2}=4-x\)
x-3=4-x
x+x=4+3
2x=7
x=\(\dfrac{7}{2}\)

Akai Haruma
24 tháng 8 2021 lúc 18:18

Lời giải:
a.

PT \(\Leftrightarrow \left\{\begin{matrix} 4-x\geq 0\\ x^2-6x+9=(4-x)^2=x^2-8x+16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 4\\ 2x=7\end{matrix}\right.\Leftrightarrow x=\frac{7}{2}\)

b.

ĐKXĐ: $x\geq \frac{3}{2}$

PT \(\Leftrightarrow \sqrt{(2x-3)+2\sqrt{2x-3}+1}+\sqrt{(2x-3)+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-3}+1)^2}+\sqrt{(\sqrt{2x-3}+4)^2}=5\)

\(\Leftrightarrow |\sqrt{2x-3}+1|+|\sqrt{2x-3}+4|=5\)

\(\Leftrightarrow \sqrt{2x-3}+1+\sqrt{2x-3}+4=2\sqrt{2x-3}+5=5\)

\(\Leftrightarrow \sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 23:56

a: Ta có: \(\sqrt{x^2-6x+9}=4-x\)

\(\Leftrightarrow\left|x-3\right|=4-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-x\left(x\ge3\right)\\x-3=x-4\left(x< 3\right)\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow2x=7\)

hay \(x=\dfrac{7}{2}\left(nhận\right)\)

Linh Diệp
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 5 2023 lúc 9:09

2:

a: =>2x^2-4x-2=x^2-x-2

=>x^2-3x=0

=>x=0(loại) hoặc x=3

b: =>(x+1)(x+4)<0

=>-4<x<-1

d: =>x^2-2x-7=-x^2+6x-4

=>2x^2-8x-3=0

=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)

 

Diệu Anh
Xem chi tiết
Nguyễn Thị Ngọc Thơ
30 tháng 6 2021 lúc 10:12

ĐK: \(\forall x\in R\)

PT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x^2-6x+9=4x^2-20x+25\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\3x^2-14x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=\dfrac{8}{3}\left(tm\right)\end{matrix}\right.\)

hnamyuh
30 tháng 6 2021 lúc 10:14

Điều kiện :  

\(\left\{{}\begin{matrix}x^2-6x+9\ge0\\2x-5\ge0\end{matrix}\right.\)⇔ \(x\ge\dfrac{5}{2}\)

Ta có : 

\(\left(\sqrt{x^2-6x+9}\right)^2=\left(2x-5\right)^2\)

⇔ \(x^2-6x+9=4x^2-20x+25\)

⇔ \(3x^2-14x+16=0\)

\(\left\{{}\begin{matrix}x=2\left(loại\right)\\x=\dfrac{8}{3}\left(tm\right)\end{matrix}\right.\)

An Thy
30 tháng 6 2021 lúc 10:15

Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge\dfrac{5}{2}\)

\(\sqrt{x^2-6x+9}=2x-5\Rightarrow\sqrt{\left(x-3\right)^2}=2x-5\)

\(\Rightarrow\left|x-3\right|=2x-5\)

Xét \(x\ge3\Rightarrow x-3=2x-5\Rightarrow x-2=0\Rightarrow x=2\) (loại)

Xét \(x< 3\Rightarrow\dfrac{5}{2}\le x< 3\Rightarrow3-x=2x-5\Rightarrow3x-8=0\Rightarrow x=\dfrac{8}{3}\) 

Vậy \(x=\dfrac{8}{3}\) là nghiệm của pt...

Vân Khánh
Xem chi tiết
thang
15 tháng 11 2016 lúc 21:00

bai nay trang 10 trong sanh toan nang cao va cac chuyen de (dai so ) 9

ngonhuminh
11 tháng 1 2017 lúc 10:14

Dòng 1 trang 29  có ghi 

X=3

rẤT TIẾC TRANG 28 BỊ MẤT KHÔNG BIẾT DOẠN ĐẦU THẾ NÀO?

ngô việt hoàng
11 tháng 1 2017 lúc 19:02

Kinh mọi sách

Mai Thị Thúy
Xem chi tiết