ĐKXĐ: \(x\ge-\dfrac{5}{2}\)
\(x^2+6x+10=2\sqrt{2x+5}\)
\(\Leftrightarrow\left(x^2+4x+4\right)+\left(2x+5+2\sqrt{2x+5}+1\right)\)
\(\Leftrightarrow\left(x+2\right)^2+\left(\sqrt{2x+5}+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\\sqrt{2x+5}+1=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-2\left(TM\right)\\\sqrt{2x+5}=-1\left(KTM\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm x=\(-2\)