CMR:
A=(x+2)(x-3)-(x-2)(x+3) chẵn
1,Ghpt:\(\left\{{}\begin{matrix}x^2+3y+1=\left(x+3\right)\sqrt{y^2+1}\\\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}=3\left(x^2+y^2\right)\end{matrix}\right.\)
2,Cho a,b,c,d∈Z tm:\(a^2+b^2+c^2=d^2\)
CMR:\(abc⋮4\) (xét chẵn lẻ)
Ta có:
\(\sqrt{2x\left(x+y\right)^3}+y\sqrt{2\left(x^2+y^2\right)}\)
\(=\sqrt{\left(2x^2+2xy\right)\left(x^2+2xy+y^2\right)}+\sqrt{2}y.\sqrt{x^2+y^2}\)
\(\le\sqrt{\left(2x^2+2xy+2y^2\right)\left(x^2+2xy+y^2+x^2+y^2\right)}=2\left(x^2+xy+y^2\right)\)
\(\Rightarrow3\left(x^2+y^2\right)\le2\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\le0\)
\(\Rightarrow x=y\)
Thế vào pt đầu:
\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)
Đặt \(\sqrt{x^2+1}=t\Rightarrow t^2-\left(x+3\right)t+3x=0\)
\(\Delta=\left(x+3\right)^2-12x=\left(x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{x+3-\left(x-3\right)}{2}=3\\t=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\)
\(\Rightarrow...\)
2. 4 biến xét dài quá, để người khác
2.
\(a^2+b^2+c^2+d^2=2d^2\) chẵn
\(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) luôn chẵn
\(\Rightarrow a+b+c+d\) chẵn
\(\Rightarrow\) trong 4 số, luôn có 2 chẵn 2 lẻ, hoặc 4 số đều chẵn
Cả 2 trường hợp đều suy ra abcd chia hết cho 4 (tích của ít nhất 2 số chẵn)
Ủa mà nhìn lại bài 2 làm sai (nhìn sai đề thành chứng minh abcd chia hết cho 4, trong khi thực tế ko có d)
Vậy làm như sau:
Do bình phương của 1 số nguyên chia 4 chỉ có thể dư 0 hoặc 1, \(\Rightarrow a^2+b^2+c^2\) chia 4 dư 0, 1, 2, 3 (tùy thuộc trong số a;b;c có bao nhiêu số là chẵn)
Trong khi đó \(d^2\) chia 4 dư 1 nên ta chỉ có 2 TH sau:
TH1: \(a^2+b^2+c^2\) và \(d^2\) đều chia hết cho 4
\(\Rightarrow a;b;c\) đều chẵn \(\Rightarrow abc⋮4\)
TH2: \(a^2+b^2+c^2\) và \(d^2\) đều chia 4 dư 1
\(\Rightarrow\) Trong a;b;c có đúng 1 số lẻ và 2 số chẵn
\(\Rightarrow abc⋮4\)
a) Phân tích A = x^4 - 6x^3 + 27x^2 - 54x + 32 thành nhân tử
b) CMR A luôn luôn chẵn với mọi x thuộc Z
a, CMR: n3 + 2012n chia hết cho 48 với mọi n chẵn.
b, Tìm gtri lớn nhất của \(B=\frac{x+1}{|x-2|}\)với x là số nguyên.
n chẵn nên đặt \(n=2k\)
\(n^3+2012n=8k^3+2012\cdot2k\)
\(8k^3+4024k\)
\(=8\left(k-1\right)k\left(k+1\right)+4032k\)
Mà \(\left(k-1\right)k\left(k+1\right)⋮6\Rightarrow8\left(k-1\right)\left(k+1\right)k⋮48;4032k⋮48\)
\(\Rightarrowđpcm\)
Bài 1 : Cho x2 - x = 3 . Tính giá trị biểu thức M= x4 - 2x3 +3x2 -2x +2
Bài 2 : CM : biểu thức A= n4 - 6n3 +27n2 -54n + 32 là số chẵn
Bài 3: Tìm nghiệm nguyên của phương trình x2 = y ( y+1) ( y+2) ( y+3)
Bài 4 : Cho a là số nguyên tố lớn hơn 3 , CMR : ( a^2 -1 ) chia hết cho 24
Bài 1:
\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)
\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)
\(=3x^2-3x+6+2\)
\(=3x^2-3x+8\)
\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)
cho P=(x+a)(x+b)(a+b)
a) CMR : P luôn biểu thị số chẵn
b) CMR nếu x là nghiệm phương trình x2 +(a+b)x +ab =0 thi x cung là nghiệ phương trình P=0
cmr gt biểu thức A= (x-3)(x+3)(x^2+9)-(x^2-3)(x^2+3)
\(A=\left(x^2-9\right)\left(x^2+9\right)-\left(x^2-3\right)\left(x^2+3\right)\)
\(=x^4-81-\left(x^4-9\right)\)
\(=-81+9=-72\)
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
1. Giải phương trình: \(\left(x-3\right)^3+\left(x+2\right)^3=\left(2x-1\right)^3\)
2. CMR: \(2009^{2008}+2011^{2010}\) chia hết cho 2010
3.CMR: \(n^3+2012n\) chia hết cho 48 với mọi n chẵn
Bài 3: mk làm theo cách này: từ A = 8k(k2+503)
Ta có: \(k\left(k^2+503\right)=k\left(k^2+5+6.83\right)\)
\(=k\left(k^2-1+6\right)+6.83k\)
\(=k\left(k^2-1\right)+6k+6.83k\)
\(=\left(k-1\right)k\left(k+1\right)+6\left(k+83k\right)\)
Vì \(\left(k-1\right)k\left(k+1\right)\) gồm tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.Mà (3,2)=1 nên \(\left(k-1\right)k\left(k+1\right)\) \(⋮2.3=6\). Do đó : \(k\left(k^2+503\right)\) \(⋮\) 6
Vậy A \(⋮\) 8.6=48
1) Đặt: \(\left\{{}\begin{matrix}x-3=a\\x+2=b\end{matrix}\right.\) ta có: \(pt\Leftrightarrow a^3+b^3=\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)
\(\Rightarrow3a^2b+3ab^2=0\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3ab=0\Leftrightarrow ab=0\\a+b=0\end{matrix}\right.\)
Khi \(ab=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Khi \(a+b=0\Leftrightarrow x-3+x+2=0\Leftrightarrow2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy pt có nghiệm \(S=\left\{3;-2;\dfrac{1}{2}\right\}\)
Bài 1:
Đặt \(\left\{\begin{matrix} x-3=a\\ x+2=b\end{matrix}\right.\). PT trở thành:
\(a^3+b^3=(a+b)^3\)
\(\Leftrightarrow (a+b)(a^2-ab+b^2)=(a+b)^3\)
\(\Leftrightarrow (a+b)[(a+b)^2-(a^2-ab+b^2)]=0\)
\(\Leftrightarrow 3ab(a+b)=0\)
\(\Rightarrow \left[\begin{matrix} a=0\\ b=0\\ a+b=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x-3=0\\ x+2=0\\ 2x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=3\\ x=-2\\ x=\frac{1}{2}\end{matrix}\right.\)
Bài 2:
Gọi \(\text{BS2010}\) là bội số của $2010$
Ta có: \(2009^{2008}+2011^{2010}=(2010-1)^{2008}+(2010+1)^{2010}\)
Vì $2008$ chẵn nên: \((2010-1)^{2008}=\text{BS2010}+1\)
\((2010+1)^{2010}=\text{BS2010}+1\)
Do đó:
\(2009^{2008}+2011^{2010}=\text{BS2010}+1+\text{BS2010}+1=\text{BS2010}+2\)
Tức là \(2009^{2008}+2011^{2010}\) không chia hết 2010 (chia 2010 dư 2)
Đề bài sai.
Nếu bạn thay $2008$ thành số lẻ thì bài toán sẽ đúng
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Cmr \(A\le\dfrac{2}{3}\)
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)